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1 Introduction

Definition 1 (Group). A group (G, ∗) consists of a set G and
binary operation ∗ : G× G → G such that

1. for all a, b, c in G, (a ∗ b) ∗ c = a ∗ (b ∗ c);

2. there exists e in G such that for all a in G, a ∗ e = e ∗ a = a;

3. for all a in G, there exists a′ such that a ∗ a′ = a′ ∗ a = e.

In lieu of a ∗ b, we often suppress ∗ and simply write ab. With
an abuse of notation, we sometimes denote the group (G, ∗) by
G when the operation ∗ is understood. The element e in (2) is
referred to as the identity of the group and a′ in (3) is referred
to as the inverse of a.

If condition (3) is omitted, we refer to the resulting structure
as a monoid. When only (1) holds, we refer to the resulting
structure as a semigroup.

When G is a finite set, we can represent it in a “Cayley table.”
For G = {+1,−1,+i,−i} with the usual notion of multiplica-
tion in C restricted to G:

× +1 −1 +i −i
+1 +1 −1 +i −i
−1 −1 +1 −i +i
+i +i −i −1 +1
−i −i +i +1 −1

Let F be a field (fields are defined in Definition 78; alterna-
tively, for the time being, it is okay to think of a field as any
one of R, Q, or C in examples). An important group is the
general linear group of dimension n. This is the set

GLn(F) =
{

A ∈ Fn×n : A is nonsingular
}
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with the usual notion of matrix multiplication. In general, the
group operation is not commutative (when the group oper-
ation is commutative, the group is said to be abelian). The
closure of this group with respect to multiplication follows
directly from det AB = det A det B and det A 6= 0 when A is
nonsingular.

Lemma 2. Suppose a, b, c in a group satisfy ba = ca or ab = ac.
Then, b = c.

Proof. Right-multiply (resp. left-mult.) the equation by the
inverse of a to get b = c.

Theorem 3. A group has unique inverses.

Proof. Suppose an element a has inverses a′ and a′′. Then,
aa′ = aa′′. It follows by the previous result that a′ = a′′.

Since the inverse of an identity in a group is itself, it follows
that:

Corollary 4. A group has unique identity.

We use the notations a′ and a−1 interchangeably for the
inverse of a along with

a0 = e, an = aa · · · a︸ ︷︷ ︸
n factors

, and a−n = (a−1)n.

Note that am+n = aman and (am)n = amn. However, (ab)n is not
necessarily equal to anbn, unless of course, the group is abelian.

Definition 5. The order of a group (G, ∗) is the cardinality of
G, denoted |G|.

Definition 6. The order of an element a in a group is |a| =
inf{n ≥ 1 : an = e}.



2 Subgroups and cyclic groups

Definition 7. Let (G, ∗) be a group. If H ⊂ G and (H, ∗ |H) is a
group, we write (H, ∗ |H) < (G, ∗).

Note that {e} is always a subgroup of G, referred to as the
trivial group. We interpret the symbol 6< as “not a subgroup
of.” Some authors use < to denote proper subgroup (we do
not).

Lemma 8. Let (G, ∗) be a group and H ⊂ G. (H, ∗ |H) < (G, ∗) if
and only if

1. H is closed under ∗ |H ;

2. e (the identity of G) is in H;

3. for all a in H, a−1 is in H.

The special linear group is a subgroup of the general linear
group whose elements have determinant one. That is,

SLn(F) =
{

A ∈ Fn×n : det A = 1
}

.

Clearly, I is in SLn(F). Given two matrices A and B in SLn(F),
since det AB = det A det B, AB is in SLn(F). Given A in
SLn(F), A−1 must be in SLn(F) since det A−1 = 1/ det A.

We can, however, do better when it comes to subgroup test-
ing:

Theorem 9 (One-step subgroup test). Let (G, ∗) be a group and
∅ 6= H ⊂ G. (H, ∗ |H) < (G, ∗) if H is closed under division (i.e. if
a, b are in H, so too is a−1b).

Proof. Since H is nonempty, there exists an element x in H.
Therefore, x−1x = e is in H. It follows, that the inverse of any
element x is also in H (take a = x, b = e). Closure under ∗
follows easily now (for x, y in H take a = x−1 and b = y).
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Corollary 10 (Two-step subgroup test). Let (G, ∗) be a group and
∅ 6= H ⊂ G. (H, ∗ |H) < (G, ∗) if H is closed under ∗ and for all a
in H, a−1 is in H.

Corollary 11 (Finite subgroup test). Let (G, ∗) be a group and
∅ 6= H ⊂ G be a finite subset of G. (H, ∗ |H) < (G, ∗) if H is
closed under ∗.

Proof. We need only show that for any a in H, a−1 is in H. If
a = e, a−1 = a is in H. Suppose then a 6= e be in H. Closure
implies an is in H for any n ≥ 0. Finitude implies ai = aj for
some i > j, and hence ai−j = e. Since a 6= e, i− j > 1, and we
can write aai−j−1 = e, and hence a−1 = ai−j−1 is in H.

Lemma 12. Let (G, ∗) be a group with some element a. Let
〈a〉 = {an : n is an integer} (with the convention a0 = e). Then,
(〈a〉, ∗ |〈a〉) < (G, ∗).

We thus refer to (〈a〉, ∗ |〈a〉) as the cyclic subgroup generated
by a (the “generator”). Trivially, all cyclic groups are abelian.

Definition 13 (Center). The center of a group (G, ∗) is

Z(G, ∗) = {a ∈ G : ∀x ∈ G : ax = xa} .

We sometimes write Z(G) or Z when context permits.

Lemma 14. For any group G, Z(G) < G.

Proof. If a and b are in the center, so too must be ab since for
any element x, abx = axb = xab. If a is in the center, then
for any element x, ax = xa. Left and right multiplying by the
inverse of a yields a−1axa−1 = xa−1 = a−1x = a−1xaa−1.
Hence, so too must a−1 be in the center.

Definition 15 (Centralizer). The centralizer of a group (G, ∗)
with respect to a in G is

C(G, ∗, a) = {g ∈ G : ga = ag} .

We sometimes write C(a) when the underlying group is
clear. The following is proved similarly to Lemma 14.

Lemma 16. For any group G and element a in G, C(a) < G.
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Theorem 17. Let G be a group and 〈a〉 be a cyclic subgroup of G.
If a has infinite order, all distinct powers of a are distinct elements.
Otherwise, 〈a〉 = {e, a, a2, . . . , an−1} and ai = aj if and only if n
divides i− j.

Proof. Suppose ai = aj. Then, ai−j = e. If a has infinite order,
i = j. If a has order n, then |i − j| ≥ n. Moreover, i − j = kn
since otherwise am = e for some m < n.

Corollary 18. If |a| is finite and ak = e for some integer k, |a|
divides k.

Lemma 19. Let 〈a〉 be a cyclic group of order n. Then 〈ak〉 = 〈a〉 if
and only if gcd(k, n) = 1.

Proof. Suppose gcd(k, n) = 1. Then, there exist integers u, v
such that ku + nv = 1. Therefore, a1 = aku+nv = akuanv = aku

and hence a is in 〈ak〉, and hence so too is a2, a3, etc.. For the
converse, suppose gcd(k, n) = d > 1 so that k = td and n = sd.
Then (ak)s = atsd = atn = e. Therefore |ak| ≤ s < n.

Therefore, if a cyclic group has order n, it has φ(n) genera-
tors, where φ is Euler’s totient function.

Lemma 20. Every subgroup of a cyclic group is cyclic.

Proof. Suppose H < 〈a〉 and H 6= {e} (the claim is trivial if
H = {e}). Therefore, at is in H for some t > 0. Let m be the
least such positive integer. Clearly, 〈am〉 < H. We would like to
show that this holds with equality. To do so, we pick b = ak in
H and show that it is in 〈am〉. By the minimality of m, we can
write k = mq + r, where 0 ≤ r < m. It follows that ar = a−mqak.
However, a−mq = (am)−q. Therefore, ar is in H. Since r < m, r
must be zero. Therefore, ak = amq is in 〈am〉.

Theorem 21. Let 〈a〉 be a cyclic group of order n. For each divisor k
of n, this group has exactly one subgroup of order k, namely 〈an/k〉.





3 Permutation groups

Definition 22. σ : A → A is a permutation of A if it is a bijec-
tion. A permutation group of a set A is a set of permutations
of A that form a group under composition.

If A is finite, the symmetric group is that consisting of all
possible permutations, of which there are |A|! of. We denote
the symmetric group by Sn, where n is the number of elements
in the underlying set. Note that Sn is not abelian if n ≥ 3.

Consider, two permutations of {1, . . . , 5}:

P =

(
1 2 3 4 5
2 5 4 3 1

)
and Q =

(
1 2 3 4 5
3 2 1 5 4

)
.

In this notation, the top row is the input, mapping to corre-
sponding elements of the bottom row. Their composition is

QP =

(
1 2 3 4 5
3 2 1 5 4

)(
1 2 3 4 5
2 5 4 3 1

)

=

(
1 2 3 4 5
2 4 5 1 3

)
The convention used here is the usual right-to-left function
composition convention. The permutation computed above is
x 7→ Q(P(x)). We also use “cycle notation”:

P = (125) (34) and Q = (13) (2) (45) ≡ (13) (45)

and QP = (135)(246). For example, (15) is shorthand for(
1 5
5 1

)
=

(
1 2 3 4 5
5 2 3 4 1

)
.

Lemma 23 (Disjoint cycles commute). If the pair of cycles α and β

have no entries in common, αβ = βα.
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Corollary 24. The order of a permutation written in disjoint cycle
form is the least common multiple of the lengths of the cycles.

A cycle of length 2 is called a transposition, as it exchanges
two elements. Any permutation can be written as a product of
transpositions. For example,

(12345) = (15) (14) (13) (12) .

Lemma 25. If e = β1β2 . . . βr (the identity) where each βi is a
transposition, then r is even.

Lemma 26. If a permutation α can be expressed as a product of an
even (resp. odd) number of transpositions, every decomposition of
α can be expressed as a product of an even (resp. odd) number of
transpositions.

Proof. Suppose α = β1 · · · βr = γ1 · · · γs. Then, e = αα−1 =

β1 · · · βr(γ1 · · · γs)−1 = β1 · · · βrγs · · · γ1. By the previous
lemma, r + s must be even, and hence r and s must have the
same parity.

We thus refer to permutations as either even or odd.

Theorem 27. The set An of even permutations in Sn is a subgroup
of Sn.

Proof. The product of two even permutations is an even permu-
tation. The inverse of an even permutation is an even permuta-
tion.



4 Homomorphisms

Definition 28. A map ϕ : (G, ∗) → (G′, ∗′) is a group homo-
morphism if ϕ(a ∗ b) = ϕ(a) ∗′ ϕ(b) is in G′ for all a, b in G.
Furthermore, we define:

1. monomorphism: a group homomorphism that is injective;

2. epimorphism: a group homomorphism that is surjective;

3. isomorphism: a group homomorphism that is bijective (and
hence both a monomorphism and epimorphism);

4. endomorphism: a group homomorphism in which the do-
main and codomain are the same;

5. automorphism: a bijective group homomorphism in which
the domain and codomain are the same (and hence both an
isomorphism and an endomorphism).

Any pair of groups have at least one homomorphism be-
tween them: the trivial group homomorphism ϕ : G → G′ with
ϕ(g) = e′. If two groups G and G′ are isomorphic, we write
G ' G′. A classic example of is

(R,+) ' ((0, ∞) , ·)

under any of the isomorphisms in the family {x 7→ cx}c>0 (e.g.
ϕ(x) = ex).

Lemma 29. If G and G′ are epimorphic and G is abelian, so too is
G′.

Proof. Let ϕ(a), ϕ(b) be two elements of G′. Since G is abelian,
ϕ(a)ϕ(b) = ϕ(ab) = ϕ(ba) = ϕ(b)ϕ(a).

Definition 30. Let ϕ : G → G′ be a group homomorphism. The
kernel of ϕ is

ker ϕ = ϕ−1({e}) =
{

x ∈ G : ϕ(x) = e′
}

.
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As an example, let ϕ : GLn(F) → (R \ {0} , ·) with ϕ(A) =

det A. This is trivially a homomorphism, and ker ϕ = SLn(F).

Theorem 31 (Properties of homomorphisms). Let ϕ be a group
homomorphism from G to G′. Then,

1. if e is the identity of G, ϕ(e) is the identity of G′;

2. for all a in G, ϕ(a−1) = ϕ(a)−1;

3. if H < G then ϕ(H) < G′;

4. if K′ < G′, then ϕ−1(K′) < G;

5. if H < G is cyclic (resp. abelian; resp. normal in G; see Definition
53), so too is ϕ(H);

6. for each integer n and group element a in G, ϕ(an) = (ϕ(a))n;

7. for any g in G with finite order, |ϕ(g)| divides |g|;

8. for any g in G with ϕ(g) = g′, ϕ−1(g′) = g ker ϕ;

9. if H < G and |H| finite, |ϕ(H)| divides |H|.

10. if K′ C G′, then ϕ−1(K′) C G (see Definition 53);

11. if ϕ is onto and ker ϕ = {e}, ϕ is an isomorphism from G to G′.

Proof. Let a be an element of G. (1) ϕ(a) = ϕ(ae) = ϕ(a)ϕ(e)
and hence e = ϕ(e) by left-multiplication by ϕ(a)−1. (2) e′ =
ϕ(e) = ϕ(aa−1) = ϕ(a)ϕ(a−1) and the desired result follows
by left-multiplication by ϕ(a)−1. (3) and (4) follow from the
group homomorphism property and preservation of inverses.
(5)–(8) are trivial. (9) follows from (8). (10) is proved similar to
(5). (11) follows from (8).

From this, it follows that ker ϕ < G (moreover, ker ϕ C G;
see Theorem 61).

Definition 32. Let H be a subgroup of G. The left coset of H in
G with respect to some g in G is defined as

gH = {gh}h∈H .

The right coset is defined similarly.
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Theorem 33. Let ϕ be a group homomorphism from G to G′ and let
H = ker ϕ. Let g be an element of G. Then

ϕ−1(ϕ({g})) = {x ∈ G : ϕ(x) = ϕ(g)} = gH = Hg.

Proof. First, note that

gH = g ker ϕ =
{

gh : ϕ(h) = e′
}

.

Let K = ϕ−1(ϕ({g})). If x = gh is in gH, then ϕ(gh) =

ϕ(g)ϕ(h) = ϕ(g) (since H = ker ϕ). Therefore, x is in K.
Suppose now that x is in K so that ϕ(x) = ϕ(g). Taking g = x
and h = e, we have gh = x with ϕ(h) = e′. The proof for the
right coset is the same.

Corollary 34. A group homomorphism ϕ is a monomorphism if and
only if ker ϕ = {e}.

Proof. Let H = ker ϕ. If ϕ is injective, then H = {e} since
ϕ(e) = e′ and if anything else mapped to the identity, this
would contradict injectivity. The converse follows as a corollary
to Theorem 33.

Theorem 35 (Cayley’s theorem). Any group is isomorphic to a
group of permutations.

Proof. For any g in G, define Tg(x) = gx (check that Tg is a
permutation of G). Let G′ = {Tg : g ∈ G}. We first show that
G′ equipped with function composition is a group. The iden-
tity is Te, since TgTe = TeTg = Tg. The operation is associative
since function composition is associative. Furthermore, for any
g, Tg−1 Tg = TgTg−1 = Te and hence G′ contains its inverses.

Consider ϕ : G → G′ with ϕ(g) = Tg. Note that ϕ(ab) = Tab

and ϕ(a)ϕ(b) = TaTb and Ta(Tb(g)) = abg = Tab(g), thereby
satisfying the homomorphism property. Suppose now ϕ(a) =

ϕ(b). Then, Ta = Tb, or ax = Ta(x) = Tb(x) = bx for all x,
implying a = b. Surjectivity is trivial.

The following gathers results that have previously been
proven above, or are trivial:

Theorem 36 (Properties of isomorphisms). Let ϕ be a group
isomorphism from G to G′. Then,
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1. for all a, b in G, ab = ba if and only if ϕ(a)ϕ(b) = ϕ(b)ϕ(a);

2. G is abelian if and only if G′ is abelian;

3. for all a in G, |a| = |ϕ(a)|;

4. G is cyclic if and only if G′ is cyclic;

5. for b in G, xk = b has the same number of solutions in G as
xk = ϕ(b) in G′ (k is an integer);

6. ϕ−1 is an isomorphism (from G′ to G).

Property (5) has some useful applications in showing that
groups are not isomorphic. For example, consider (C \ {0}, ·)
and (R \ {0}, ·). The equation x4 = 1 has four solutions in the
former, but only two in the latter (note that 1 is the identity in
both, so that any isomorphism ϕ must satisfy ϕ(1) = 1).

Definition 37. Let G be a group with a in G. The function
ϕa(x) = axa−1 is called the inner automorphism of G induced
by a.

It is easy to show that ϕa is an automorphism (it maps G to
itself, it is bijective, and it satisfies the homomorphism prop-
erty). We denote the set of automorphisms of G by Aut(G) and
inner automorphisms of G by Inn(G).

Theorem 38. Let G be a group. Aut(G) and Inn(G) equipped with
function composition are both groups.

Proof. Consider Aut(G). Denoting by ϕ and ϕ′ two automor-
phisms, ϕ ◦ ϕ′ is an automorphism. Furthermore, the identity
mapping (i.e. ψ(x) = x) is an automorphism and serves as
the identity for the group. For any automorphism ϕ, ϕ−1 is an
automorphism and ϕ ◦ ϕ−1 is the identity.

Consider Inn(G). Denoting by ϕa and ϕb two inner automor-
phisms, ϕa ◦ ϕb is an inner automorphism since ϕa(ϕb(x)) =

abxb−1a−1 = (ab)x(ab)−1 = ϕab(x). The inner automorphism
ϕe is the identity mapping and serves as the identity for the
group. Lastly, it is easy to see that ϕa and ϕa−1 are inverses for
any inner automorphism ϕa.



5 Direct products

Definition 39 (External direct product). Let G1, . . . , Gn be
groups. The external direct product G1

⊕ · · ·⊕Gn is the set
of all n-tuples for which the i-th component is an element of Gi,
and the operation is component-wise.

It is easy to see that this is a group with unity (e1, . . . , en).
Note that G1, G2, etc. are not subsets of the external direct
product and therefore not subgroups of it either (hence “exter-
nal”).

Lemma 40. Let G = G1 ⊕ · · · ⊕ Gn be an external direct product of
groups with a = (a1, . . . , an) in G. Then, |a| = lcm{|a1|, . . . , |an|}.

Proof. Let k = lcm{|a1|, . . . , |an|}. Clearly, ak = e since k divides
|ai| for each i. Suppose that |a| = j < k. Then for all i, aj

i = ei

and hence |ai| divides j, a contradiction.

Theorem 41. Let G and H be finite cyclic groups. Then G ⊕ H is
cyclic if and only if |G| and |H| are relatively prime.

Proof. Let G = 〈g〉, |G| = m, H = 〈h〉, and |H| = n. Note that
|G⊕ H| = mn.

Suppose m and n are relatively prime. Then (g, h) has order
mn and hence 〈(g, h)〉 is cyclic.

Suppose m and n are not relatively prime. Let (gk, hj) be an
element of G⊕ H. Since ` = lcm(m, n) < mn and (gk, hj)` = e,
every element of G⊕ H has order lower than mn, and G⊕ H is
not cyclic.

Corollary 42. Let G = G1 ⊕ · · · ⊕ Gn be an external direct product
of finite cyclic groups. G is cyclic if and only if |G1|, . . . , |Gn| are
(pairwise) relatively prime.
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Corollary 43. Zn1···nk ' Zn1 ⊕Znk if and only if n1, . . . , nk are
relatively prime.

Definition 44 (Internal direct product). Let G be a group and
H1, . . . , Hn < G. G is said to be the internal direct product of
H1, . . . , Hn if ϕ : H1 ⊕ · · · ⊕ Hn → G with ϕ(h1, . . . , hn) =

∏n
i=1 hi is a group isomorphism.

A result relating external and internal direct products is
given in Theorem 65.



6 Cosets and normal subgroups

Cosets are defined in Definition 32. We gather below some
trivial properties of cosets:

Theorem 45. Let H be a subgroup of G with a, b in G. Then,

1. a is in aH (resp. Ha);

2. aH = H = Ha if and only if a is in H;

3. aH = bH or aH ∩ bH = ∅ (resp. Ha = Hb or Ha ∩ Hb = ∅);

4. aH = bH (resp. Ha = Hb) if and only if a−1b (resp. ab−1) is in
H;

5. |aH| = |bH| = |Ha| = |Hb|;

6. aH = Ha if and only if a−1Ha = H;

7. aH (resp. Ha) is a subgroup of G if and only if a is in H.

Proof. (1) H contains the identity and hence ae ∈ aH.
(2) If a ∈ H, we have aH ⊂ H since ah ∈ H for any h ∈ H.

For an arbitrary b ∈ H, take h = a−1b to get ah = b so that
aH ⊃ H, and hence aH = H. For the converse, if a is not in H,
a ∈ aH and hence aH 6= H.

(3) Suppose ah ∈ bH for some h ∈ H. Then, a = bh′h−1 for
some h′ ∈ H and hence a ∈ bH. Moreover, ah′′ = bh′h−1h′′

for any h′′ ∈ H and hence aH ⊂ bH. Similarly, bH ⊂ aH, and
hence aH = bH.

(4) Suppose a−1b ∈ H. Then, aa−1bh = bh is in aH for any
h ∈ H, and therefore aH ⊃ bH. Similarly, b−1a ∈ H since H is
closed under inversion and hence bH ⊃ aH. For the converse,
if a−1b /∈ H, then b /∈ aH, but b ∈ bH.

(5) It’s easy to see that |aH| = |H| for any a.
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(6) If a−1Ha = H, any element of H can be written a−1ha,
where h ∈ H. Therefore, aH = {ah}h∈H = {a(a−1h′a)}h′∈H =

Ha. As for the converse, suppose a−1Ha 6= H. Then, there
exists h ∈ H such that either (i) a−1ha /∈ H or (ii) h /∈ a−1Ha.
In case (i), ha 6= ah′ for all h′ ∈ H. In case (ii), ah 6= h′a for all
h′ ∈ H.

(7) If a ∈ H it is easy to check that aH is a group. If aH is a
group, then e = ah for some h, and hence h−1 = ahh−1 = a ∈
H.

In particular, (1) and (3) imply that left (resp. right) cosets
partition G (i.e. there is a subset G′ of G such that G =⋃

a∈G′ aH and {aH}a∈G′ are pairwise disjoint).

Theorem 46 (Lagrange’s theorem). If G is a finite group and
H < G, then |H| divides |G|. Moreover, the number of distinct left
(resp. right) cosets of H in G is |G|/|H|.

Proof. Denote by {ai H}r
i=1 the distinct left cosets of H in G.

Since G =
⋃r

i=1 ai H and distinct cosets are disjoint, |G| =
∑r

i=1 |ai H|. Since |ai H| = |H|, |G| = r|H|.

|G|/|H| is referred to as the index of H in G, and sometimes
written [G : H].

Corollary 47. If G is a finite group and a is in G, |a| divides |G|.

Proof. Since |a| = |〈a〉| and 〈a〉 < G this follows from La-
grange’s theorem.

Corollary 48. If G is a group of prime order, it is cyclic.

Proof. Let a 6= e be an element of G. Then 〈a〉 < G. Further-
more, |〈a〉| > 1 and |〈a〉| divides |G|. Since |G| is a prime, it
follows that |〈a〉| = |G| and hence 〈a〉 = G.

Corollary 49. Let a be an element of a finite group G. Then, a|G| =
e.

Proof. By Corollary 47, a|G| = ak|a| = e.

We can now prove Euler’s theorem. To do so, we first intro-
duce a new group:
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Definition 50 (Group of units in Zn). Let n be a positive inte-
ger. Let Un be the set of elements of Zn = {0, . . . , n− 1} with
inverses under multiplication modulo n.

Trivially, Un is a group under multiplication modulo n.

Lemma 51. Un = {m ∈ Zn : m and n are coprime}.

Proof. This is a direct consequence of Bézout’s lemma (i.e. d =

gcd(m, n) is the smallest positive integer that can be written as
am = d + bn for integers a, b).

Corollary 52 (Euler’s theorem). Let a and n be coprime. Then,
aφ(n) ≡ 1 mod n, where φ is Euler’s totient function.

Proof. Lemma 51 establishes that |Un| = φ(n). By Corollary 49,
a|Un| ≡ 1 mod n.

Definition 53. Let G be a group and H < G. H is normal if
aH = Ha for all a in G.

We denote a normal subgroup with H C G. Trivially,
Z(G) C G (recall Z(G) is the center of G). Some other ex-
amples of normal subgroups are An C Sn (recall An is the set
of even permutations), SLn(F) C GLn(F).

Theorem 54 (Normal subgroup test). Let G be a group and H <

G. H C G if and only if for all elements a in G, a−1Ha ⊂ H.

Proof. Suppose that for all a ∈ G, a−1Ha ⊂ H (and hence
aHa−1 ⊂ H as well). Let a ∈ G and h ∈ H. Since a−1ha ∈ H,
Then, a(a−1ha) = ha and hence aH ⊃ Ha. Similarly, Ha ⊃ aH.
As for the converse, suppose that a−1ha /∈ H. Then, a(a−1ha) =
ha /∈ aH.

As an application, we show (i) An C Sn and (ii) SLn(F) C

GLn(F). (i) Let σ be a permutation in Sn. Then, for any even
permutation σ′, σ−1σ′σ is an even permutation, and hence
σ−1Anσ ⊂ An. (ii) Let a be an element of GLn(F). Then
det(a−1ha) = det(h), and hence a−1SLn(F)a ⊂ SLn(F).

Theorem 55. Let G be a group and H C G. The set G/H =

{aH}a∈G is a group under the operation (aH)(bH) = abH.
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Proof. First, we must make sure that the group operation is
well-defined. Suppose aH = a′H and bH = b′H. By Theorem
45, a′a−1 ∈ H and b−1b′ ∈ H. Therefore,

abH = Hab =
{(

ha′a−1
)

ab
}

h∈H
= Ha′b = a′bH

=
{

a′b
(

b−1b′h
)}

h∈H
= a′b′H.

The inverse of an element aH is a−1H.

The group G/H is called a quotient group or factor group.
With a slight abuse of notation, let Z be the group of inte-

gers under addition. An important family of quotient groups is
{Z/nZ}n>1 with

Z/nZ = {0 + nZ, . . . , (n− 1) + nZ} .

It is easy to show that Z/nZ is isomorphic to Zn, the integers
with addition modulo n.

Theorem 56. Let G be a group. G/Z(G) is cyclic if and only if G is
abelian.

Proof. By the hypothesis, G/Z(G) = 〈gZ(G)〉 for some g in G.
Let a, b be elements of G with aZ(G) = (gZ(G))i = giZ(G) and
bZ(G) = gjZ(G). Therefore, a = gix and b = gjy for some x, y
in Z(G). Therefore,

ab = gixgjy = xgi+jy = xygi+j = yxgi+j = ygi+jx = gjygix = ba.

The converse is trivial: if G is abelian, Z(G) = G and hence
G/Z(G) = G/G = {aG}a∈G. But, aG = G independent of a,
and hence G/Z(G) = {G} = 〈G〉.

Recall that Inn(G) = {x 7→ a−1xa : a ∈ G} is the set of inner
automorphisms.

Theorem 57. G/Z(G) ' Inn(G).

Proof. Let ψ(aZ(G)) = ϕa, where ϕa(x) = axa−1.
We first show ψ is well-defined. If aZ(G) = bZ(G),

a−1b is in Z(G) by Theorem 45. Therefore, for all x in G,
x = (a−1b)−1x(a−1b) = b−1axa−1b, or equivalently, ϕa = ϕb.
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Clearly, ψ is surjective. If ϕa = ϕb, then for all x in G,
axa−1 = bxb−1 , and hence xa−1b = a−1bx. That is, a−1b is
in Z(G), so that aZ(G) = bZ(G). Lastly,

ψ((Z(G)a)(Z(G)b)) = ψ(Z(G)ab) = ϕab

= ϕa ◦ ϕb = ψ(Z(G)a)ψ(Z(G)b).

Definition 58 (Stabilizer of a point). Let G be a group of per-
mutations on a set S. Let s be an element of S. The stabilizer of
s in G is

stabG(s) = {σ ∈ G : σ(s) = s} .

Definition 59 (Orbit of a point). Let G be a group of permuta-
tions on a set S. Let s be an element of S. The orbit of sunder G
is

orbG(s) = {σ(s) : σ ∈ G} ⊂ S.

Theorem 60 (Orbit-stabilizer theorem). Let G be a subgroup of
Sn, the symmetric group of order n. For any 1 ≤ i ≤ n, |G| =
| stabG(i)|| orbG(i)|.

Proof. Note that H = stabG(i) C G since for any σ in G,
σ−1Hσ ⊂ H. Therefore, we can consider the quotient group
G/H = {σH}σ∈G. To show [G : H] = |G|/|H|, it is sufficient
to show that there exists a bijection between G/H and orbG(i).
Let ϕ : G/H → orbG(i) with ϕ(σH) = σ(i). First, we check
that this function is well-defined. Let σ, σ′ ∈ G with σH = σ′H,
so that σ−1σ′ ∈ H, which implies σ(i) = σ′(i). Similarly, ϕ is
injective. ϕ is trivially surjective.

Theorem 61 (First isomorphism theorem). Let ϕ : G → G′ be a
group homomorphism. Then, ker ϕ C G and ϕ(G) ' G/ ker ϕ.

Proof. The first part of the proof is trivial: K = ker ϕ < G and
for any a in G, a−1Ka ⊂ K since ϕ(a−1xa) = ϕ(a)−1ϕ(x)ϕ(a) =
e′ for x in K.

Since K C G, G/K is well-defined. Let ψ : G/K → ϕ(G)

with ψ(xK) = ϕ(x). We first check ψ is well-defined. Let x
and y be elements of G. Note that xK = yK implies x−1y is
in K, and hence ϕ(x−1y) = ϕ(x)−1ϕ(y) = e′, or equivalently,
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ϕ(x) = ϕ(y). The converse is also true, so that ψ is injective.
Trivially, ψ is surjective. Lastly, we check the homomorphism
property:

ψ((xK)(yK)) = ψ(xyK) = ϕ(xy) = ϕ(x)ϕ(y) = ψ(xK)ψ(yK).

As a simple example, consider the map ϕ : Z → Zn with
ϕ(an + r) ≡ r mod n, where 0 ≤ r < n. It follows that
ker ϕ = 〈n〉 = nZ, so that Zn ' Z/nZ.

Definition 62 (Normalizer). The normalizer of a subgroup
(H, ∗ |G) of (G, ∗) is

N(H, G, ∗) =
{

g ∈ G : g−1Hg = H
}

wbere g−1Hg = {ghg : h ∈ H}.

We sometimes write N(H) when the underlying group is
clear.

Theorem 63. For any H < G, N(H)/C(H) ' K where K <

Aut(H).

Proof. We first show C(H) is normal so that N(H)/C(H) is
well-defined. To do so, we show that y−1C(H)y ⊂ C(H)

for any y in G. Note that an element of y−1C(H)y is of
the form y−1xy where x is in the centralizer. Furthermore,
(y−1xy)−1h(y−1xy) = y−1x−1(yhy−1)xy = y−1yhy−1y = h,
as desired.

Let ϕ : N(H) → Aut(H) with ϕ(g) = ϕg the inner automor-
phism with respect to g. ϕ is a group homomorphism (check).
It is easy to check that ker ϕ = C(H). The desired result fol-
lows from the first isormorphism theorem.

Theorem 64. If N C G, there exists a homomorphism of which N is
the kernel.

Proof. Take ϕ : G → G/N with ϕ(g) = gN. It is easy to check
that ϕ is a homomorphism. Furthermore, ker ϕ = {g ∈ G :
ϕ(g) = N} = N since gN = N if and only if g is in N.

Theorem 65. Let G be a group and H1, . . . , Hn ≤ G. Then G is an
internal direct product of H1, . . . , Hn if and only if
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1. G = ∏n
i=1 Hi = {∏n

i=1 hi : hi ∈ Hi};

2. Hi ∩ Hj = {e} for any i 6= j;

3. Hi C G for any i.

Proof. It is sufficient to prove the case of n = 2. Let ϕ(h1, h2) =

h1h2.
Let h be in H1 and H2. Since ϕ is injective, we have ϕ(h, h) =

h2 = ϕ(h2, e). Therefore, h must be the identity, and hence
H1 ∩ H2 = {e}.

Since ϕ is surjective, the image ϕ(H1 × H2) = H1H2 = G.
By the homomorphism property, ϕ((h1, h2)(k1, k2)) =

ϕ(h1k1, h2, k2) = h1k1h2k2 and ϕ((h1, h2)(k1, k2)) =

ϕ(h1, h2)ϕ(k1, k2) = h1h2k1k2 so that k1h2 = h2k1. Since k1

and h2 are arbitrary, we conclude that every element of H1

commutes with every element of H2. From this, it follows that
g−1H1g = H1 and g−1H2g = H2 for any element g, and hence
H1 C G and H2 C G.

The converses of the above statements are similar in nature.

Lemma 66. Let G be a finite abelian group and p a prime such that
|G| = mpn where p does not divide m. Then, G = H ⊕ K where
H = {x ∈ G : xpn

= e} and K = {x ∈ G : xm = e}.

Proof. Note that K is a group since it is closed under inverse
and if x and y are in K, (xy)m = xmym = e (G is abelian).
The same statement can be made of H. Moreover, this implies
H, K C G since any subgroup of an abelian group is normal in
that group.

By Theorem 65, it is sufficient to show G = HK and H ∩ K =

{e}.
Since m and pn are coprime, Bézout’s Lemma yields the

existence of integers s and t with 1 = sm + tpn. Therefore,
x = xsm+tpn

= xsmxtpn
. Since x|G| = xmpn

= e, (xsm)pn
=

(xmpn
)s = es = e, and hence xsm is in H. Similarly, xtpn

is in K.
Therefore, G = HK.

Suppose x is in both H and K. Therefore, xpn
= e = xm, or

xpn−m = e. Therefore, |x| divides pn and m. Since these are
coprime, |x| = 1, and hence x = e.
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Corollary 67 (Fundamental theorem of finite abelian groups).
Let G be a finite abelian group. Let ∏k

i=1 pni
i be the prime factoriza-

tion of |G|. Then G = H1 ⊕ · · · ⊕ Hk where

Hi =
{

x ∈ G : xp
ni
i = ei

}
.

The factorization of G is unique up to ordering of the factors.



7 Rings and fields

A ring is a set equipped with two operations that are related:

Definition 68. A ring (R,+, ∗) consists of a set R and two
binary operations +, ∗ : R→ R such that

1. (R,+) is an abelian group;

2. (R, ∗) is a semigroup;

3. for all a, b, c in R, a(b + c) = (ab) + (ac) and (a + b)c =

(ac) + (bc).

When parentheses are omitted, multiplication ∗ takes prece-
dence over addition +. A ring (R,+, ∗) is said to be commuta-
tive if (R, ∗) is abelian. We often refer to the identity in (R,+)

as 0 and that in (R, ∗) as 1. As usual, we often omit + and ∗
when they are understood and simply write R.

Some authors instead take instead (2) to be (R, ∗) is a
monoid. We refer to this as a ring with unity (a.k.a. unital ring,
unitary ring, etc.). These authors refer to our definition as an
rng or pseudoring.

Theorem 69 (Properties of rings). Let R be a ring with elements
a, b, c. Then,

1. a0 = 0a = 0;

2. a(−b) = (−a)b = −(ab);

3. (−a)(−b) = ab;

4. a(b− c) = ab− ac and (b− c)a = ba− ca;

5. If R is a ring with unity, (−1)a = −a;

6. If R is a ring with unity, (−1)(−1) = 1.
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Proof. (1) a0 = a(0 + 0) = a0 + a0 and hence 0 = a0.
(2) ab + a(−b) = a(b− b) = 0 and hence a(−b) = −(ab).
(3) 0 = (−a)(b − b) = −(ab) + (−a)(−b) and hence ab =

(−a)(−b).
The remaining claims follow.

Theorem 70. The additive and multiplicative identities in a ring are
unique.

Proof. Identical to the proof of Theorem 3.

Corollary 71. A ring has unique additive and multiplicative in-
verses.

Note that the above claims concern uniqueness, not exis-
tence.

Definition 72 (Subring). (S,+ |S, ∗ |S) is a subring of a ring
(R,+, ∗) if S ⊂ R and (S,+ |S, ∗ |S) is itself a ring.

Theorem 73 (Subring test). S is a subring of a ring R if S is closed
under subtraction and multiplication.

Proof. Since Sis closed under subtraction, 0 − a = −a is in
S for each a in S, and hence S contains its additive inverses.
Furthermore, it is closed under addition since a + b = a− (−b)
for a, b in S.

Definition 74 (Zero divisor). An element a of a commutative
ring R is called a zero divisor if there exists x in R such that
ax = 0.

Definition 75 (Integral domain). A commutative ring R with
unity is said to be an integral domain if it has no zero divisors.

Theorem 76. If a, b, c are elements of an integral domain and ab =

ac, a = 0 or b = c.

Proof. ab = ac can be written a(b− c) = 0. The result follows.

Definition 77 (Unit). An element of a ring is called a unit if it
has a multiplicative inverse.

Definition 78 (Field). A field is a commutative ring with unity
in which every nonzero element is a unit.
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Theorem 79. D is a finite field if and only if D is a finite integral
domain.

Proof. If D is a finite field, it is trivially a finite integral do-
main.

Let D be an integral domain. If D is the trivial ring {0}
(with 0 = 1), the claim is vacuously true. Otherwise, suppose a
is a nonzero element of D. If a = 1, a is trivially a unit. If a 6= 1,
consider 〈a〉 as a subgroup of (D, ∗). Since D is finite, we must
have ai = aj for some i > j, and hence aj(ai−j − 1) = 0. By the
assumption, either a = 0, or ai−j = 1. Therefore, ai−j−1a = 1,
and hence a is a unit.

Theorem 80. Zn is a field if and only if n is a prime.

Proof. If n = ab for 1 < a, b < n, then ab ≡ 0 mod n and hence
Zn is not an integral domain. The other direction follows since
Euler’s theorem guarantees an inverse for each nonzero ele-
ment.

Definition 81 (Characteristic of a ring). The characteristic
of a ring R, char(R), is the least positive integer n such that
x + · · ·+ x︸ ︷︷ ︸

n times

= 0 for all x in R. If no such n exists, char(R) = 0.

Theorem 82. Let R be a ring with unity and n a positive integer.
|1| = n in (R,+) if and only if char(R) = n.

Proof. If |1| = n, 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0 so that a + · · · + a = a(1 +

· · · + 1) = a0 = 0. Therefore, char(R) = n. The converse is
trivial.

Theorem 83. The characteristic of an integral domain is either zero
or prime.

Proof. Suppose the characteristic is n = st. Then 1 + · · ·+ 1︸ ︷︷ ︸
n times

=

(1 + · · ·+ 1︸ ︷︷ ︸
s times

)(1 + · · ·+ 1︸ ︷︷ ︸
t times

). Then, either 1 + · · ·+ 1︸ ︷︷ ︸
s times

or 1 + · · ·+ 1︸ ︷︷ ︸
t times

is zero, and hence one of s or t must be one.

Definition 84 (Ideal). A subring A of a ring R is called a (two-
sided) ideal of R if for every r in R and every a in A, ra and ar
are in A.
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Theorem 85 (Ideal test). A nonempty subset of a ring R is an ideal
of R if

1. a− b is in A for all a, b in A;

2. ra or ar are in A for all a in A and rin R.

{0} is an ideal of any ring and hence referred to as the trivial
ideal. Given an element a in a ring R, 〈a〉 = {ar : r ∈ R} is the
principal ideal generated by a. This should not be confused with
the notation of a cyclic group.

Since (R,+) is an abelian group and any subring (A,+)

satisfies (A,+) C (R,+), we can form the quotient group
R/A : (R,+)/(A,+) = {r + A : r ∈ R} where r + A = A + r =
{r + a : a ∈ A}. We might ask, is the resulting structure a ring?

Theorem 86. Let R be a ring and A a subring of R. (R,+)/(A,+)

is a ring under the operations

(s + A) + (t + A) = s + t + A

(s + A)(t + A) = st + A

if and only if A is an ideal of R.

The above and some of the following theorems are given
without proof as they are similar to their group analogues.

Definition 87 (Prime ideal). A proper ideal A ( R of a ring R
is a prime ideal if for any a and b in R, ab in A implies a and b
are in A.

For example, in the ring (Z,+, ∗), nZ is a prime ideal if and
only if n is a prime.

Another example is that 〈x2 + 1〉 is not a prime ideal in
Z2[x] (see Definition 100). To see this, note that (x + 1)2 =

x2 + 2x + 1 ≡ x2 + 1 mod 2. However, x 7→ x + 1 is not in
〈x2 + 1〉.

Definition 88 (Maximal ideal). A proper ideal A ( R of a ring
R is said to be a maximal ideal if whenever B is an ideal of R
and A ⊂ B ⊂ R, then B = A or B = R.

Theorem 89. Let R be a ring. R/A is an integral domain if and
only if A is a prime ideal.
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Theorem 90. Let R be a commutative ring with unity and A be an
ideal of R. R/A is a field if and only if A is maximal.

Definition 91. A ring homomorphism ϕ : R → R′ from
a ring R to a ring R′ satisfies ϕ(a + b) = ϕ(a) + ϕ(b) and
ϕ(ab) = ϕ(a)ϕ(b) for all a, b in R. A ring homomorphism that
is bijective is called a ring isomorphism.

Theorem 92 (Properties of ring homomorphisms). Let ϕ : R →
R′ be a ring homomorphism, A be a subring of R and B an ideal of S.
Then,

1. for all rin R, ϕ(r + . . . + r) = ϕ(r) + . . . + ϕ(r);

2. ϕ(A) is a subring of R′;

3. if A is an ideal and ϕ is a surjective, ϕ(A) is an ideal;

4. ϕ−1(B) is an ideal of R;

5. if R is commutative, ϕ(R) is so too;

6. if R is a ring with unity, R′ 6= {0}, and ϕ is surjective, then ϕ(1)
is the unity of R′;

7. ϕ is an isomorphism if and only if ϕ is surjective and ker ϕ =

{0};

8. if ϕ is an isomorphism, ϕ−1 is an isomorphism from R′ to R.

Theorem 93 (First isomorphism theorem for rings). Let ϕ : R→
R′ be a ring homomorphism. Then,

1. ker ϕ is an ideal of R;

2. R/ ker ϕ ' ϕ(R) with isomorphism r + ker ϕ 7→ ϕ(r).

Theorem 94. An ideal A of a ring R is the kernel of the homomor-
phism r 7→ r + A.

Lemma 95. Let R be a ring with unity 1. The mapping ϕ : Z → R
given by

n 7→ sign(n)(1 + . . . + 1︸ ︷︷ ︸
|n| times

)

is a ring homomorphism.
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Corollary 96. A ring with unity contains a subring isomorphic to
Zn if it has characteristic n > 0 and contains a subring isomorphic
to Z otherwise.

Corollary 97. x 7→ x mod n is a ring homomorphism from Z to
Zn.

Recall that the characteristic of an integral domain is either
zero or prime.

Corollary 98. A field contains a subfield isomorphic to Zp if it
has characteristic p > 0 and contains a subfield isomorphic to Q

otherwise.

Theorem 99 (Field of quotients). Let D be an integral domain.
There exists a field that contains a subring isomorphic to D.

The construction here is the usual construction of the ra-
tional numbers from the integers. We equip D × D with the
equivalence relation (a, b) ∼ (c, d) whenever ad = bc. It
can be shown that the set of resulting equivalence classes
along with the operations (a, b) + (c, d) = (ad + bc, bd) and
(a, b)(c, d) = (ac, bd) are a field. The subfield {[(a, 1)] : a ∈ D}
is isomorphic to D.

Definition 100 (Polynomial ring). Let R be a commutative ring.
The ring of polynomials over R is

R[x] =

{
n

∑
k=0

akxk : n is a positive integer and ai ∈ R

}
with the usual notions of addition and multiplication of poly-
nomials.

Two elements f (x) = ∑ akxk and g(x) = ∑ bkxk of R[x] are
equal when ak = bk for all k. This means that even if f (x) =

g(x) for all x, f is not necessarily equal to g. Under this notion
of equivalence, R[x] is simply the subset of all sequences in RN

with finitely many nonzero terms.
Instead of saying f is in R[x], we often say f is a polynomial

over R.

Definition 101 (Degree). The degree of a polynomial f over a
ring R is

deg f = sup {k ≥ 0 : ak 6= 0} .
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A polynomial is said to be monic if adeg f = 1.

According to the definition above, the degree of the zero
polynomial is deg 0 = sup ∅ = −∞. Some authors use −1.

Theorem 102. Let D be an integral domain and f , g be polynomials
over D. Then, deg( f g) = deg f + deg g.

Proof. If f (x) = ∑ aixi and g(x) = ∑ bixi are polynomials of
degree n and m, respectively, the coefficient of xn+m in f g is
anbm 6= 0.

Corollary 103. If D is an integral domain, so too is D[x].

Theorem 104 (Division algorithm). Let F be a field and f , d be
polynomials over F with d 6= 0. There exist q, r in F[x] such that

f = dq + r where deg r < deg d.

Proof. If deg f < deg d, the result is trivial.
Otherwise, let f (x) = ∑m

i=1 aixi and d(x) = ∑n
j=1 bjxj. Let

p(x) = f (x)− d(x) am
bn

xm−n, eliminating the highest order term
in f . Note that deg p < deg f . Continue this process until
the resulting polynomial has degree less than that of d so that
f (x)− d(x)( am

bn
xm−n + · · · ) = r(x).

Corollary 105. Let F be a field, a an element of F, and f a poly-
nomial over F. Then, f (a) is the remainder in the division of f by
x 7→ x− a.

Corollary 106. Let F be a field, a an element of F, and f a polyno-
mial over F. Then, a is zero of f if and only if x 7→ x − a is a factor
of f .

Corollary 107. Let F be a field and f a nonzero polynomial over F
whose distinct zeros are a1, . . . , ak of multiplicities n1, . . . , nk. f has
the factorization

f (x) = (x− a1)
n1 · · · (x− ak)

nk q(x)

where q ∈ F[x] and deg q < ∑
i

ni ≤ deg f .

Definition 108 (Principal ideal domain). A principal ideal
domain (PID) is an integral domain R in which every ideal has
the form

〈a〉 = {ra : r ∈ R} for some a ∈ R.
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Theorem 109. Let F be a field. Then, F[x] is a PID.

Let A be an ideal of F[x]. If A = {0}, then A = 〈0〉. Suppose
therefore, that A has a nonzero element. Let g be a minimal
degree polynomial in A. Suppose there exists f in A but not in
〈g〉. Then, f = gq + r where r is nonzero and deg r < deg g.
Then, r = f − gq, and is in A. However,

deg r ≥ max {deg f , deg gq} = max {deg f , deg g + deg q}
= deg g + deg q ≥ deg g,

a contradiction.

Corollary 110. Let F be a field. Any nontrivial ideal A of F[x] is of
the form 〈g〉 where g is in F[x]. Furthermore, g has minimum degree
in A.

Definition 111 (Irreducible polynomial). Let D be an integral
domain. Let f be a nonzero polynomial that is not a unit in
D[x]. f is said to be reducible over D if there exist g, h in D[x]
such that f = gh and g and h that are not units in D[x]. Other-
wise, f is said to be irreducible.

For example, 2x is irreducible over Z. However, since 2 is a
unit in Q, 2x is reducible over Q.

Theorem 112 (Reducibility test). Let F be a field. If f is a polyno-
mial over F and 2 ≤ deg f ≤ 3 then f is reducible over F if and only
if f has a zero in F.

Proof. Suppose f = gh with g and h nonconstant. Then
deg f = 3 = deg g + deg h so that deg g = 1 (w.l.o.g.). Then,
g(x) = ax + b so that x = −a−1b is a root of g, and hence a root
of f . The converse is trivial.

Definition 113 (Content of a polynomial). The content of a
polynomial p(x) = ∑n

k=1 akxk with integer coefficients is

c(p) = gcd(a0, . . . , an)

where gcd(0, n) = n. A primitive polynomial has content 1.

Theorem 114 (Gauss’ lemma). If f , g are polynomials over Z,
c( f g) = c( f )c(g).
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Proof. Since c( f )c(g) is a common divisor of the coefficients
of f g, it is sufficient to prove c( f g) = 1 whenever f and g are
primitive.

Let f = ∑ akxk and g = ∑ bkxk be primitive and
suppose f g is not. Then there exists a prime p such that
p is a common factor of the coefficients of f g. Let r =

sup{k ≥ 0 : p does not divide ak} and s = sup{k ≥
0 : p does not divide bk}. Consider the coefficient of xr+s:
∑ akbr+s−k. This sum contains arbs, but all remaining terms
akbr+s−k divisible by p since either k > r or k < r and hence
r + s− k < s. We arrive at a contradiction.

More generally, Gauss’ lemma holds on any GCD domain.
We do not consider GCD domains here.

Theorem 115. Let f be a polynomial over Z. If f is reducible over
Q, then it is reducible over Z. Moreover, f has a factorization gh
with deg g, deg h ≥ 1.

Proof. Let f be a polynomial over Z that is reducible over Q.
Then, f = gh where g, h are nonunit polynomials over Q.
W.l.o.g., we take c( f ) = 1 since otherwise, we could instead
consider the polynomial f /c( f ). Let `g be the least common
multiple of the denominators of the coefficients of g and define
`h similarly. Then, `gg and `hh are polynomials over Z. Let cg

be the content of `gg and define ch similarly. Then, `gg = cgg′

and `hh = chh′ for some primitive polynomials g′, h′ over Z.
Therefore, `g`h = c(`g`h f ) = c(cgchg′h′) = cgch and hence
f = g′h′.

The contrapositive is also useful, as seen below:

Theorem 116 (Modulo p irreducibility test). Let p be a prime
and f a polynomial over Z with degree greater or equal to 1. Let
f be the polynomial obtained by replacing the coefficients of f with
their least positive residues modulo p. If f is irreducible over Zp and
deg f = deg f , f is irreducible over Q.

Proof. Suppose f is reducible over Q. By Theorem 115, f = gh
where g, h are nonunit polynomials over Z. Denote by g and h
the respective polynomials reduced modulo p so that f = gh.
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Suppose deg g 6= deg g and deg h 6= h. Then,

deg f = deg gh = deg g+deg h < deg g+deg h = deg gh = deg f .

It follows that g and h are nonunit polynomials over Zp that
factor f .

Note that we use a prime number p in the above since Zn is
not an integral domain for composite n.

Theorem 117 (Eisenstein’s criterion). Let f (x) = ∑n
k=0 akxk be a

polynomial over Z. If there is a prime p such that p does not divide
an, p divides ak for k < n, and p2 does not divide a0, f is irreducible
over Q.

Proof. We prove the contrapositive. Suppose f is reducible over
Q and that there exists a p satisfying the above requirements.
By Theorem 115, f = gh where g, h are nonunit polynomials
over Z. Let g(x) = ∑r

i=0 bixi and h(x) = ∑r
i=0 cixi. Since p

divides a0 = b0c0 but not a2
0, either p divides exactly one of

b0 and c0 (w.l.o.g., we assume it divides b0). Since p does not
divide an = brcs. Therefore, there exists an minimal 0 < t ≤
r < n such that p does not divide bt. By the Cauchy product,
we can at = btc0 + ∑t

i=1 bt−ici. Since t was minimal, it divides
∑t

i=1 bt−ici. Since p divides at, it must divide one of bt and c0, a
contradiction.

Theorem 118. Let D be an integral domain and x, y be elements of
D. Then,

1. x divides y if and only if 〈y〉 ⊂ 〈x〉;

2. x is a unit if and only if 〈x〉 = D.

Proof. Suppose x divides y. That is, there exists t in D such
that y = tx. Therefore, y ∈ 〈x〉 and hence 〈y〉 ⊂ 〈x〉. Con-
versely, suppose 〈y〉 ⊂ 〈x〉.

Theorem 119. Let F be a field and p be a polynomial over F. Then,
〈p〉 is a maximal ideal in F[x] if and only if p is irreducible over F.

Proof. Suppose p is irreducible and 〈p〉 is not maximal. Then,
there exists an ideal B such that 〈p〉 ( B ( F[x]. By Theorem
109, F[x] is a PID and hence B = 〈g〉 for some polynomial
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g over F. Since 〈g〉 ( F[x], by Theorem 118, g is not a unit.
Also due to Theorem 118, since 〈p〉 ⊂ 〈g〉, p = f g for some
polynomial f over F. However, p is irreducible, so that f must
be a unit in F[x]. Therefore, g = f−1 p , and hence p divides g.
By Theorem 118, 〈g〉 ⊂ 〈p〉, a contradiction.

As for the converse, suppose 〈p〉 is a maximal ideal and
p = f g a factorization of p. Suppose that f and g are not units.
Since 〈p〉 ( 〈 f 〉 and 〈p〉 is maximal, 〈 f 〉 = F[x] by Theorem
118, and hence f is a unit, a contradiction.

The above can be generalized for arbitrary PIDs in lieu of
F[x].

Theorem 120. Let R be a commutative ring with unity and I an
ideal. J is a maximal ideal if and only if R/J is a field.

Corollary 121. Let F be a field and p a polynomial over F. F[x]/〈p〉
is a field.

Proof. By Theorem 119 and Theorem 120.

Definition 122 (Associates). Two elements of an integral do-
main are said to be associates if they divide one another.

We can extend our definition of irreducibility as follows:

Definition 123 (Irreducible element). A nonunit, nonzero ele-
ment of an integral domain is said to be irreducible if it cannot
be factored into a product of two nonunit elements. Otherwise,
it is said to be reducible.

Definition 124 (Prime). A nonunit element p of an integral
domain is said to be prime if for all a and b also in the integral
domain, if p divides a or b whenever it divides ab.

Note that in a general integral domain, primes and irre-
ducibles need not coincide. However...

Theorem 125. A prime in an integral domain is irreducible.

Proof. Suppose p is prime and reducible, so that p = ab for
nonunit a and b. Therefore, p divides a or b. W.l.o.g., suppose
p divides a so that a = pt for some t. Equivalently, a = abt,
or a(1− bt) = 0. Since a is nonzero, bt = 1, and hence b is a
unit.
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The converse also holds in a PID:

Theorem 126. In a PID, an element is prime if and only if it is
irreducible.

Proof. Suppose a is an irreducible element of the PID, D. Sup-
pose that a divides bc. Let I = {ax + by : x, y ∈ D}. Note
that I is an ideal since if z is in I and r is an element of D,
zr = (ax + by)r = axr + byr is in I. Since D is a PID, I = 〈p〉
for some p. Since a is in I, a = pr for some r. Since a is ir-
reducible, d or r is a unit. If d is a unit, I = D. Therefore,
1 = ax + by so that c = cax + cby so that a divides c. If r is
a unit, 〈a〉 = 〈d〉 = I. Since b is in I, at = b for some t and a
divides b.

Corollary 127. Let F be a field and let a, b, and p be polynomials
over F. If p is irreducible over F and p divides ab, then p divides a or
b.

Proof. F[x] is a PID by Theorem 109.

Definition 128 (Unique factorization domain). A unique factor-
ization domain (UFD) R is an integral domain in which every
nonzero x in can be written

x = up1 · · · pn where u is a unit and pi is irreducible.

This representation is unique in the sense that if x = wq1 · · · qn

for w a unit and qi irreducible, there exists a bijection ϕ :
{1, . . . , n} → {1, . . . , m} such that pi and qϕ(i) are associates.

Lemma 129 (Ascending chain condition). In a PID, any ascend-
ing chain of ideals I1 ⊂ I2 ⊂ · · · terminates (i.e. In = In+1 for some
n).

Proof. Note that I =
⋃∞

i=1 Ii is an ideal, and therefore I =

〈a〉 for some element a in the PID. Since a is in I, a is in In for
some n. Therefore, 〈a〉 ⊂ In, and therefore In = I.

We give the following without proof:

Theorem 130. All PIDs are UFDs.

Corollary 131. Let F be a field. F[x] is a UFD.
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Proof. By Theorem 109 and the above.

The following structure generalizes Euclidean division:

Definition 132 (Euclidean domain). An integral domain D
is called a Euclidean domain if there is a function d from the
nonzero elements of D to the nonnegative integers such that

1. d(a) ≤ d(ab) for all nonzero a, b in D;

2. if a, b are in D with b 6= 0, there exist q and r in D such that
a = bq + r with r = 0 or d(r) < d(b).

Theorem 133. A Euclidean domain is a PID.

Proof. Let I be an ideal of a Euclidean domain D with I 6= {0}.
Let b be an element of I with b 6= 0 and d(b) minimal. Let a
be in I. Write a = bq + r where r = 0 or d(r) < d(b). Then,
r = a − bq and hence r is in I. If r 6= 0, d(r) < d(b), which
contradicts the assumption that d(b) is minimal in I. Therefore,
a = bq. Since a was arbitrary, I = 〈b〉.

We give the following without proof:

Theorem 134. If D is a UFD, so too is D[x].
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