
Math 525: Assignment 8 Solutions

1.

(a) From class, Pe = e. Therefore, µ⊺Pe = µ⊺e.

(b) First, note that µ⊺P k = ((P k)⊺µ)⊺ = ((P ⊺)kµ)⊺. Moreover,

(P ⊺)kµ = (P ⊺)k−1P ⊺µ

= (P ⊺)k−1P ⊺ (c1v1 + · · ·+ cmvm)

= (P ⊺)k−1 (c1λ1v1 + · · ·+ cmλmvm)

= · · ·

= c1λ
k
1v1 + · · ·+ cmλ

k
mvm.

Therefore, µ⊺P k = c1λ
k
1v

⊺

1 + · · ·+ cmλ
k
mv

⊺

m.

(c) We know ρ(P ) ≤ 1 and λ1 = 1. Therefore, |λj| < 1 whenever j 6= 1 and hence

lim
n→∞

λn
1 = 1 and lim

n→∞

λn
j = 0 if j 6= 1.

It follows that

lim
n→∞

µ⊺P n = lim
n→∞

{c1λ
n
1v

⊺

1 + · · ·+ cmλ
n
mv

⊺

m}

= c1v
⊺

1 lim
n→∞

λn
1 + · · ·+ cmv

⊺

m lim
n→∞

λn
m = c1v

⊺

1 .

(d) This follows from the fact that products are continuous:

(c1v
⊺

1)P =
(

lim
n→∞

µ⊺P n
)

P = lim
n→∞

µ⊺P n+1 = lim
n→∞

µ⊺P n = c1v
⊺

1 .

(e) By part (a), we know that (µ⊺P n)e = 1 for any n. Therefore,

1 = lim
n→∞

((µ⊺P n)e) =
(

lim
n→∞

µ⊺P n
)

e = (c1v
⊺

1)e.

Since v1 is a positive vector, c1 must be positive, since otherwise (c1v
⊺

1)e ≤ 0.

(f) Part (c) is akin to saying c1v
⊺

1 is the limiting distribution of the Markov chain and
part (d) is akin to saying that the limiting distribution is an equilibrium/stationary
distribution of the Markov chain.

1



2.

(a) Simplifying completely, the answer is

P(τ ≤ n) =







(1− p)n+1

2p− 1
−

pn+1

2p− 1
+ 1 if p 6= 1/2

2−n (−1 + 2n − n) if p = 1/2.

(1)

Below are two methods to obtain this solution.

i. The first method uses four states.

• Let S = {HH,HT, TH, TT}. The interpretation is as follows:

– HH : the most recent coin flip was H , immediately preceded by H .

– HT : the most recent coin flip was T , immediately preceded by H .

– TH : the most recent coin flip was H , immediately preceded by T .

– TT : the most recent coin flip was T , immediately preceded by T .

• The transitions between these states is given by the matrix

P̃ =









p 1− p
p 1− p

p 1− p
p 1− p









.

• In the context of our problem, this isn’t quite the transition matrix we
want! That’s because as soon as we encounter HT , the “game” should
terminate. Therefore, we modify it to

P =









p 1− p
1

p 1− p
p 1− p









.

• The initial distribution (i.e., the distribution of X0) is given by

µ⊺ =
(

p2 p (1− p) p (1− p) (1− p)2
)

.

• The terminal distribution we are interested in is

ν⊺ =
(

0 1 0 0
)

.

• Putting this all together, we get P(τ ≤ n) = µ⊺P n−2ν. The reason we are
using n−2 instead of n here is that in the Markov chain, X0 corresponds
to after we have already seen the first two coin flips. You can (optionally)
simplify this to get (1).

ii. The second method uses only three states. The reason we can do this is that
we are actually maintaining some redundant information in method (i).

• Let S = {ǫ,H,HT}. The interpretation is as follows:
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– ǫ: we have not flipped any coins yet.

– H : the most recent coin flip was H (it is understood that if we are in
this state, we have not yet seen HT ).

– HT : the most recent coin flip was T , immediately preceded by H .

• The transition matrix is

P =





1− p p
p 1− p

1





(draw a picture of the graph to get a better sense of what is going on).

• The initial distribution (i.e., the distribution of X0) is given by

µ⊺ =
(

1 0 0
)

.

• The terminal distribution we are interested in is

ν⊺ =
(

0 0 1
)

.

• Putting this all together, P(τ ≤ n) = µ⊺P nν. You can (optionally)
simplify this to get (1).

(b) Once we have an expression for P(τ ≤ n), we can obtain an expression for P(τ = n)
as follows. Since P(τ = 1) = 0, we can assume n > 1. Then,

P(τ = n) = P(τ ≤ n)− P(τ < n) = P(τ ≤ n)− P(τ ≤ n− 1)

(you can simplify the above further if you want to obtain an expression like (1)).

(c) Plugging in n = 10 and p = 1/3 into (1), we get

P

(

τ ≤ 10

∣

∣

∣

∣

p =
1

3

)

=
57002

59049
≈ 0.96533.
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