
Math 525: Lecture 9

February 1, 2018

1 Convergence of random variables

In a previous lecture, we saw that (roughly speaking) B(n, λ
n
) → Poisson(λ) as n → ∞.

But what does “→” mean here? More generally, consider a sequence of random variables
X1, X2, . . . What does it mean for this sequence to converge? Are there multiple notions of
convergence available? Which notions of convergence are useful? This will be the topic of
today’s lecture.

Definition 1.1. The sequence (Xn)n of random variables converges pointwise to a random
variable X if Xn(ω) → X(ω) for each ω in the sample space.

This is the usual definition of pointwise convergence for functions, but it’s not the most
useful in probability. Why? Consider two random variables X and Y which are equal to a.s.,
but we can find ω such that X(ω) 6= Y (ω). Then, the alternating sequence X, Y,X, Y, . . .
does not have a pointwise limit, even though the two random variables are “essentially” the
same!

The above discussion implies that we need a weaker notion of convergence when it comes
to probability:

Definition 1.2. Let (Xn)n be a sequence of random variables and X be a random variable.

1. (Xn)n converges in probability to X if for all ǫ > 0,

P {|Xn −X| > ǫ} → 0 as n → ∞.

2. (Xn)n converges to X with probability one or almost everywhere (a.e.) if Xn(ω) → X(ω)
for all ω /∈ Λ where P(Λ) = 0.

3. (Xn)n converges to X in L
p if Xp is integrable and

E [|Xn −X|p] → 0 as n → ∞.

We write Xn
L
p

−→ X in this case. When p = 1, we call this “convergence in mean”.

4. Let Fn and F denote the distribution functions of Xn and X, respectively. (Xn)n
converges to X in distribution if Fn(x) → F (x) for all continuity points of F . We

write Xn
D
−→ X in this case.
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Some notions of convergence are stronger than others:

Proposition 1.3. If Xn
L
p

−→ X, then Xn → X in probability.

Proof. This is a consequence of Chebyshev’s inequality:

P {|Xn −X| > ǫ} ≤
1

ǫp
E [|Xn −X|p] → 0.

Proposition 1.4. If Xn → X a.e., then Xn → X in probability.

Proof. Suppose Xn → X pointwise for all ω /∈ Λ where P(Λ) = 1. Let

Zn = sup
k≥n

|Xk −X|

and note that limn Zn = lim supn |Xn −X|. Therefore,

Xn(ω) → X(ω) ⇐⇒ Zn(ω) → 0.

Let ǫ > 0 and
Γǫ
n = {Zn ≥ ǫ} .

If ω ∈ ∩nΓ
ǫ
n, then Z(ω) 9 0, and hence ∩nΓ

ǫ
n ⊂ Λ. Moreover, note that these sets are

decreasing in containment:
Γǫ
1 ⊃ Γǫ

2 ⊃ · · ·

Therefore, P(Γǫ
n) → P(∩nΓ

ǫ
n) ≤ P(Λ) = 0. Since |Xn −X| ≤ Zn,

P {|Xn −X| ≥ ǫ} ≤ P(Γǫ
n) → 0.

The converse of the above is not true in general:

Example 1.5. Let Y ∼ U [0, 1] and define

X1 = 1

X2 = I[0,1/2](Y )

X3 = I(1/2,1](Y )

X4 = I[0,1/4](Y )

X5 = I(1/4,1/2](Y )

...

Note that Xn → 0 in probability. However, there is no ω for which Xn(ω) → 0!

It is not trivial that a limit of a sequence of random variables is a random variable itself,
so we prove that next. As a technical point, since limits may introduce values of −∞ and
+∞, we need to work with random variables which can take on infinite values:

Definition 1.6. Let R = R ∪ {−∞,+∞} denote the extended real line. An extended real
valued (ERV) random variable is a function X : Ω → R such that

{X ≤ x} ∈ F for all x ∈ R.
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Proposition 1.7. Let X1, X2, . . . be ERV random variables. Then, M , m, and X∞ are also
ERV random variables where

1. M(ω) = supXn(ω).

2. m(ω) = lim supn→∞Xn(ω).

3. X∞(ω) =

{

limnXn(ω) if the limit exists

0 otherwise.

Note that by taking the negation of the first two, we find that infXn and lim infn→∞Xn

are also ERV random variables.

Proof.

1. We need to show that {ω : M(ω) ≤ x} = ∩n{ω : Xn(ω) ≤ x} is in F for any x ∈ R.
Since it is a countable intersection of sets in F , the desired result follows.

2. Note that m = infn Yn where Yn = supk≥nXk. We know by the previous point that
Yn is an ERV random variable for each n. Therefore, supn−Yn = − inf Yn is an ERV
random variable, and so too is m.

3. Let

Λ∞ =

{

ω : lim sup
n

Xn(ω) = lim inf
n

Xn(ω)

}

.

This set is in F , and hence we can define the random variable

Yn = IΛ∞
Xn.

The desired result follows because

lim sup
n

Yn = lim
n

Xn

is an extended real-valued random variable.

2 Borel-Cantelli lemma

Definition 2.1. Let (Λn)n be a sequence of subsets of Ω. Define

lim sup
n

Λn = {ω | ∀N : ∃n ≥ N : ω ∈ Λn}

lim inf
n

Λn = {ω | ∃N : ∀n ≥ N : ω ∈ Λn} .

Intuitively, we can think of lim supn Λn as the set of all ω such that ω ∈ Λn for “infinitely
many n”. Similarly, lim infn Λn is the set of all ω such that ω ∈ Λn for “all but finitely many
n”. Expressed in an equivalent way,

lim sup
n

Λn =
⋂

N

⋃

n≥N

Λm

lim inf
n

Λn =
⋃

N

⋂

n≥N

Λm.
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Applying De Morgan’s law, we see

(lim supΛn)
c =

(

⋂

N

⋃

n≥N

Λm

)c

=
⋃

N

⋂

n≥N

Λc
m = lim inf Λc

n

and hence lim supΛc
n = (lim inf Λn)

c also.

Proposition 2.2 (Borel-Cantelli lemma). Let (Λn)n be a sequence in F . Suppose
∑

n P(Λn) <
∞. Then,

P {lim supΛn} = 0.

Proof. Recall that

lim sup
n

Λn =
⋂

N

AN where AN =
⋃

n≥N

Λn.

In particular, (AN)N is decreasing in containment: A1 ⊃ A2 ⊃ · · · Therefore,

lim
N→∞

P(AN) = P

(

⋂

N

AN

)

= P

(

lim sup
n

Λn

)

as N → ∞.

But note that

lim
N→∞

P(AN) = lim
N→∞

P

(

⋃

n≥N

Λn

)

≤ lim
N→∞

∑

n≥N

P(Λn) → 0.

Next, we look at an important application of the Borel-Cantelli lemma:

Proposition 2.3. Let (Xn)n be a sequence of ERV random variables and suppose Xn → X
in probability. Then, there exists a subsequence (nk)k such that Xnk

→ X a.e.

Proof. Taking ǫ = 1/m in the definition of convergence in probability, we find that for each
m,

P {|Xn −X| > 1/m} → 0 as n → ∞.

Choose an increasing sequence (nm)m such that

P(Λm) < 1/2m.

where

Λm =

{

|Xnm
−X| >

1

m

}

.

Then,
∑

m P(Λm) < ∞, and therefore P(lim supm Λm) = 0 by the Borel-Cantelli lemma.
Therefore,

P

(

lim inf
m

Λc
m

)

= 1− P

(

lim sup
m

Λm

)

= 1.

Recall now that
lim inf

m
Λc

m = {ω | ∃N : ∀m ≥ N : ω /∈ Λn} .
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Therefore, for each ω ∈ lim infm Λm, we can find an N(ω) (depending on ω) such that for all
m ≥ N(ω), we have ω /∈ Λm. It follows that for ω ∈ lim infm Λm,

|Xnm
(ω)−X(ω)| ≤

1

m
for all m ≥ N(ω)

and hence
|Xnm

(ω)−X(ω)| → 0.

That is, Xnm
→ X pointwise on the set lim infm Λm, which is exactly the definition of a.e.

convergence.

3 Modes of convergence diagram

The following diagram summarizes convergence relationships in a probability space. AE
refers to a.e. convergence, Lp refers to what we’ve been calling L

p convergence, and M
refers to convergence in probability. AU is a.u. convergence which we will most likely not
encounter, though it’s definition is below for those who are interested.

Figure 1: Modes of convergence (diagram by John Cook). A solid line from one mode of
convergence to another indicates implication (e.g., a.e. convergence implies convergence in
probability). A dashed line means that we can extract a subsequence, as in Proposition 2.3.

3.1 Almost uniform convergence (optional)

Let (fn)n be a sequence of real-valued functions and f be a real-valued function such that
fn and f have the same domain. We say fn → f uniformly if for each ǫ > 0, we can find N
such that for all n ≥ N ,

‖fn − f‖
∞

≡ sup
x

|fn(x)− f(x)| < ǫ.

Definition 3.1. Let (Xn)n be a sequence of random variables and X be a random variable.
We say Xn → X almost uniformly (a.u.) if for every ǫ > 0, we can find a set A ∈ F
with P(A) < ǫ such that Xn|Ac → X|Ac converges uniformly. Here, the symbol ·|Ac is the
restriction of a function to the set Ac.
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