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January 30, 2018

1 Moment inequalities

There are a few useful inequalities concerning moments of random variables we should cover.
We start with Markov’s inequality.

1.1 Markov’s inequality

The following inequality is a special case of a more general measure theoretic result. In the
measure theoretic setting, it is called Chebyshev’s inequality.

Proposition 1.1 (Markov’s inequality). Let p > 0, λ > 0, and X be a random variable with
Xp integrable. Then,

P({|X| ≥ λ}) ≤
1

λp
E [|X|p] .

Proof. First, note that

P({|X| ≥ λ}) = P({|X|p ≥ λp}) = E
[

I{|X|p≥λp}

]

.

But if |X(ω)|p ≥ λp, then 1 ≤ |X(ω)|p/λp. Therefore,

E
[

I{|X|p≥λp}

]

≤ E

[

|X|p

λp
I{|X|p≥λp}

]

≤
1

λp
E
[

|X|p I{|X|p≥λp}

]

≤
1

λp
E [|X|p] .

Corollary 1.2. Let λ > 0 and Y be a square integrable (i.e., Y 2 is integrable) random
variable. Then,

P({|Y − EY | ≥ λ}) ≤
1

λ2
Var(Y ).

Proof. Take p = 2 and X = Y − EY in Markov’s inequality.

1.2 Cauchy-Schwarz(-Buniakovski) inequality

Proposition 1.3 (Cauchy-Schwarz(-Buniakovski) inequality). Let X and Y be square inte-
grable random variables. Then,

E [XY ] ≤
√

E [X2]E [Y 2].
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Proof. If either X or Y is zero a.s., then the inequality is trivial. Therefore, suppose that
neither is zero a.s. Let λ ≥ 0. Then,

0 ≤ E
[

(X − λY )2
]

= E
[

X2
]

− 2λE [XY ] + λ2
E
[

Y 2
]

and hence

E [XY ] ≤
1

2

(

1

λ
E
[

X2
]

+ λE
[

Y 2
]

)

.

Letting λ =
√

E [X2]/
√

E [Y 2] yieldsw

E [XY ] ≤
1

2

(

√

E [Y 2]
√

E [X2]
E
[

X2
]

+

√

E [X2]
√

E [Y 2]
E
[

Y 2
]

)

=
E [Y 2]E [X2]
√

E [X2]E [Y 2]

=
√

E [X2]E [Y 2].

Example 1.4. Let X ∼ Poisson(λ) and Y ∼ Bernoulli(p) be random variables. Then, by
the Cauchy-Schwarz inequality,

E [XY ] ≤
√

E [X2]E [Y 2] =
√

λ (λ+ 1) p.

If the two random variables are independent, then

E [XY ] = EXEY = λp.

Indeed, you can check that for all 0 ≤ p ≤ 1 and λ ≥ 0,

λp ≤
√

λ (λ+ 1) p.

2 Jensen’s inequality

Next, we will cover Jensen’s inequality, probably one of the most useful inequalities in prob-
ability theory! To discuss Jensen’s inequality, we need to recall the notion of a convex
function:

Definition 2.1. Let X be a subset of Rn. We say X is convex if for all points x, y ∈ X and
θ ∈ [0, 1], we have θx+ (1− θ)y ∈ X.

Definition 2.2. Let X be convex and f : X → R. We call the set

epi(f) = {(x, µ) ∈ X × R : f(x) ≤ µ}

the epigraph of f . We say f is a convex function if its epigraph is convex. We say f is
concave if −f is convex.

Intuitively, a convex function is one whose epigraph makes a “bowl”:
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Figure 1: Examples of convex and non-convex sets

Figure 2: Epigraph (green) of a function f (blue curve)
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Example 2.3. x, |x|, x2, e−x are convex on R. The function f defined by

f(x) =

{

1/x if x 6= 0

0 if x = 0

is not convex on R, but it is convex on (−∞, 0) and (0,∞).

Proposition 2.4. Let X be convex and f : X → R. f is a convex function if and only if for
all x, y ∈ X and θ ∈ [0, 1],

f(θx+ (1− θ) y) ≤ θf(x) + (1− θ) f(y).

Proof. Suppose f is a convex function. Let x, y ∈ X and θ ∈ [0, 1]. Note that (x, f(x)) and
(y, f(y)) are both points in epi(f). By convexity,

θ(x, f(x)) + (1− θ)(y, f(y)) = (θx+ (1− θ) y, θf(x) + (1− θ) f(y)) ∈ epi(f)

and hence
f(θx+ (1− θ) y) ≤ θf(x) + (1− θ) f(y),

as desired.
Suppose f satisfies the convexity inequality. Let (x, µx) and (y, µy) be points in epi(f)

and θ ∈ [0, 1]. By the convexity inequality,

f(θx+ (1− θ) y) ≤ θf(x) + (1− θ) f(y) ≤ θµx + (1− θ)µy

and hence

θ(x, µx) + (1− θ) (y, µy) = (θx+ (1− θ) y, θµx + (1− θ)µy) ∈ epi(f),

as desired.

Proposition 2.5. A convex set in R is an interval.

Proof. Suppose X ⊂ R is convex and not an interval. Let x, z ∈ X and y be such that
x < y < z. Pick

θ =
z − y

z − x
.

Then,

θx+ (1− θ) y =
z − y

z − x
x+

y − x

z − x
z =

xz − xy

z − x
+

yz − xz

z − x
=

yz − xy

z − x
= y.

Proposition 2.6. Let I be an interval and f : I → R. Then, f is convex if and only if for
all points x, y, x′, y′ ∈ I such that x ≤ x′ < y′ and x < y ≤ y′,

f(y)− f(x)

y − x
≤

f(y′)− f(x′)

y′ − x′
.
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Proof. Suppose f is convex and let A = (x, f(x)), B = (y, f(y)), C = (x′, f(x′)), and
D = (y′, f(y′)). Then... (proof by picture)

For the converse, let x1, x2 ∈ I and θ ∈ [0, 1]. Take x = x1, y′ = x2, and y = x′ =
θx1 + (1− θ)x2 to get

f(θx1 + (1− θ)x2)− f(x1)

θx1 + (1− θ)x2 − x1

≤
f(x2)− f(θx1 + (1− θ)x2)

x2 − θx1 − (1− θ)x2

and hence

θ (f(θx1 + (1− θ)x2)− f(x1)) (x2 − x1) ≤ (1− θ) (f(x2)− f(θx1 + (1− θ)x2)) (x2 − x1) .

Simplifying,
f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ) f(x2).

Corollary 2.7. Let I = (a, b) be an open interval and f : I → R be a convex function. Then,
f is continuous and the left and right derivatives

D−f(x) = lim
h↓0

f(x)− f(x− h)

h
and D+f(x) = lim

h↓0

f(x+ h)− f(x)

h

exist at each point x ∈ I. Moreover, D−f and D+f are nondecreasing with D−f ≤ D+f.

Proof. Let x be a point in I. By Proposition 2.6, for all h > 0 such that x−h and x+ h are
points in I,

f(x)− f(x− h)

h
≤

f(x+ h)− f(x)

h
. (1)

We would like to take limits and conclude

D−f(x) = lim
h↓0

f(x)− f(x− h)

h
≤ lim

h↓0

f(x+ h)− f(x)

h
= D+f(x).
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But first, we have to show these limits exist: note that Proposition 2.6 implies that the left
hand side of (1) increases while the right hand side of (1) decreases as h is made smaller.
That is, for a decreasing sequence of (hn)n with hn ↓ 0,

f(x)− f(x− h1)

h
≤

f(x)− f(x− h2)

h
≤ · · · ≤

f(x+ h2)− f(x)

h
≤

f(x+ h1)− f(x)

h
.

Then, the limits exist by the monotone convergence theorem (recall that the monotone
convergence theorem for sequences says that if a sequence is nondecreasing and bounded
above, it must have a limit).

Proposition 2.8. Let I = (a, b) be an open interval and f : I → R be a convex function.
Then, for each x0 ∈ I, there exists m such that for all x ∈ I,

f(x) ≥ f(x0) +m (x− x0) .

That is, at each point x0, there exists a supporting line.

This fact generalizes to higher dimensions, in which case the supporting line becomes a
supporting hyperplane.

Proof. Choose m such that
D−f(x0) ≤ m ≤ D+f(x0).

Now, if x > x0,

m ≤ D+f(x0) = lim
h↓0

f(x0 + h)− f(x0)

h
≤

f(x)− f(x0)

x− x0

and hence
f(x0) +m (x− x0) ≤ f(x).

The case of x < x0 is identical (use D−f(x0) in the argument).

Proposition 2.9 (Jensen’s inequality). Let I = (a, b) be an open interval and f : I → R be
a convex function. Let X be a random variable which takes values in (a, b) a.s. If X and
f ◦X are both integrable,

E [f(X)] ≥ f(EX).

Proof. Let x0 = EX. Now, we can find some supporting line parameterized by m:

f(x) ≥ f(x0) +m(x− x0).

Substitute x = X to get
f(X) ≥ f(x0) +m(X − x0)

(this inequality holds only a.s.). Take expectations of both sides to get

E [f(X)] ≥ E [f(x0) +m(X − x0)] = E [f(x0)] = f(x0) = f(EX).
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