Math 525: Lecture 8

January 30, 2018

1 Moment inequalities

There are a few useful inequalities concerning moments of random variables we should cover.
We start with Markov’s inequality.

1.1 Markov’s inequality

The following inequality is a special case of a more general measure theoretic result. In the
measure theoretic setting, it is called Chebyshev’s inequality.

Proposition 1.1 (Markov’s inequality). Let p > 0, A > 0, and X be a random variable with
XP integrable. Then,

1
PAIXT = A}) < ZE[X]T.
Proof. First, note that
P({|X] > A}) = P({|X]" > A\"}) = E [[xpp>rry ] -
But if | X (w)|P > AP, then 1 < | X (w)|P/AP. Therefore,

| X"
AP

1 1
E [Ixpsay] < E{ f{|XP>Ap}] < SEIXF Iyxpoan] < SEIX]]. O

Corollary 1.2. Let A > 0 and Y be a square integrable (i.e., Y? is integrable) random
variable. Then,

P({IY ~ EY| > A}) < 5 Var(Y).

Proof. Take p =2 and X =Y — EY in Markov’s inequality. O

1.2 Cauchy-Schwarz(-Buniakovski) inequality

Proposition 1.3 (Cauchy-Schwarz(-Buniakovski) inequality). Let X and Y be square inte-
grable random variables. Then,

E[XY] < VE[XZE[Y?].
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Proof. 1f either X or Y is zero a.s., then the inequality is trivial. Therefore, suppose that
neither is zero a.s. Let A > 0. Then,

0<E[(X = \Y)’] =E [X?] - 2)E[XY] + )\E [Y?]
and hence

E[XY] < % GE [X?] + AE [Yﬂ) :

Letting A = /E [X?]/1/E [Y?] yieldsw

LVEY? o VEXZ D s
E[XY]§§(\/WE[X]+WE[Y}>
EVPIE[XY]
E[X?|E[Y?]
= VE[X?|E[Y?]. O

Example 1.4. Let X ~ Poisson(\) and Y ~ Bernoulli(p) be random variables. Then, by
the Cauchy-Schwarz inequality,

E[XY] < VE[XE[Y?] = VA(A+1)p.
If the two random variables are independent, then
E[XY] =EXEY = Ap.
Indeed, you can check that for all 0 < p <1 and A > 0,

Ap < AV/AA+1)p.

2 Jensen’s inequality

Next, we will cover Jensen’s inequality, probably one of the most useful inequalities in prob-
ability theory! To discuss Jensen’s inequality, we need to recall the notion of a convex
function:

Definition 2.1. Let X be a subset of R". We say X is convex if for all points z,y € X and
6 € [0,1], we have 0z + (1 — 0)y € X.

Definition 2.2. Let X be convex and f: X — R. We call the set

epi(f) = {(z,p) € X x R: f(z) < p}

the epigraph of f. We say f is a convex function if its epigraph is convex. We say f is
concave if — f is convex.

Intuitively, a convex function is one whose epigraph makes a “bowl™
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Figure 1: Examples of convex and non-convex sets

>

Figure 2: Epigraph (green) of a function f (blue curve)




Example 2.3. z, |z|, 2%, e7 are convex on R. The function f defined by
1/x ifx#0
fr) =4
0 ifex=20
is not convex on R, but it is convex on (—oo,0) and (0, c0).

Proposition 2.4. Let X be conver and f: X — R. f is a convex function if and only if for
all z,y € X and 6 € [0,1],

fOz+(1—=0)y) <O0f(x)+(1—190) f(y).

Proof. Suppose f is a convex function. Let 2,y € X and 6 € [0,1]. Note that (z, f(z)) and
(y, f(y)) are both points in epi(f). By convexity,

0z, f(x) + (1= 0)(y, f(y)) = (0x + (1 = 0)y,0f(x) + (1 = 0) f(y)) € epi(f)

and hence
fOx+(1—-0)y) <0f(x)+(1-90) f(y),

as desired.
Suppose f satisfies the convexity inequality. Let (x,u,) and (y, p1,) be points in epi(f)
and 0 € [0, 1]. By the convexity inequality,

fOr+(1=0)y) <0f(x)+(1-0)f(y) < Ope+ (1= 0)
and hence
0(x, pa) + (L= 0) (y, py) = (0 + (1 = 0) y, Opue + (1 — 0) p1y) € epi(f),
as desired. O
Proposition 2.5. A convex set in R is an interval.

Proof. Suppose X C R is convex and not an interval. Let z,2z € X and y be such that
r <y<z Pick

[
Z—x
Then,
8x+(1_9)y:z—yx+y—xzzxz—xy+yz—xz:yz—xy:
Z—x Z—x z—x Z—x Z—x

O

Proposition 2.6. Let I be an interval and f: I — R. Then, f is convex if and only if for
all points x,y,x',y’ € I such that x <2’ <y andx <y <y,

fly) = fl@) _ fly) — f(2)

y—r = y-=a




Proof. Suppose f is convex and let A = (z, f(z)), B = (y, f(y)), C = (2, f(z')), and
D= (y, f(¢)). Then... (proof by picture)

A B
C
=12 ir e -
X x' y y'

For the converse, let 1,29 € I and 6 € [0,1]. Take z = x1, ¥ = x5, and y = 2/ =
Oz + (1 — 0)z to get

[0z + (1 = 0)xy) — f(11) < f(z2) = f(Ox1 + (1 —0)xs)
Oxy 4+ (1 — 0)zy — 14 T xe—0r;— (1—0)xs

and hence

O (f(Oxy+ (1 —0)x9) — f(21)) (w2 — 21) < (1= 0) (f(22) — f(Ox1 + (1 = 0)x2)) (T2 — 71) -

Simplifying,
f(Oxy + (1 = 0)xz) < Of(21) + (1 —0) f(w2). O

Corollary 2.7. Let I = (a,b) be an open interval and f: I — R be a convex function. Then,
f is continuous and the left and right derivatives

D_f(x) = 1}%1 J(@) = i(z — ) and D, f(x) = l}iﬂ)l

fle+h) — f(x)
h

exist at each point x € I. Moreover, D_f and D, f are nondecreasing with D_f < D, f.

Proof. Let x be a point in I. By Proposition 2.6, for all h > 0 such that x —h and x + h are

points in 7,
flz) = fla—h) _ fla+h)— fz)
h - h '
We would like to take limits and conclude
fl@) = fla=n) . fla+h) - f(z)

D_f(z) =1lim - < lim . D, f(x)

(1)




But first, we have to show these limits exist: note that Proposition 2.6 implies that the left
hand side of (1) increases while the right hand side of (1) decreases as h is made smaller.
That is, for a decreasing sequence of (hy,), with A, | 0,

f(@) = flz — M) Sf(f’f)—f(!’f—h2) <._.<f($+h2)—f($) Sf@*'hl)—f(f)'

h h - h h

Then, the limits exist by the monotone convergence theorem (recall that the monotone
convergence theorem for sequences says that if a sequence is nondecreasing and bounded
above, it must have a limit). O

Proposition 2.8. Let I = (a,b) be an open interval and f: I — R be a convex function.
Then, for each xo € I, there exists m such that for all x € I,

f(x) = f(xo) +m (v — o).
That is, at each point g, there exists a supporting line.

This fact generalizes to higher dimensions, in which case the supporting line becomes a
supporting hyperplane.

Proof. Choose m such that
D_ f(x9) <m < Dy f(xo).

Now, if x > x,

f(xo+h) — f(xo) <f(55)—f(550)

m < Dy f(xp) = lim

h|0 h - T — Xo
and hence
flzo) +m(x —x0) < f(2).
The case of © < zg is identical (use D_ f(zo) in the argument). O

Proposition 2.9 (Jensen’s inequality). Let [ = (a,b) be an open interval and f: I — R be
a convex function. Let X be a random variable which takes values in (a,b) a.s. If X and
f o X are both integrable,

E[f(X)] = f(EX).

Proof. Let xo = EX. Now, we can find some supporting line parameterized by m:

f(x) = fxo) +m(x — o).

Substitute x = X to get
F(X) = f(xo) + m(X — )

(this inequality holds only a.s.). Take expectations of both sides to get

E[f(X)] = E[f(20) + m(X —x0)] = E[f(w0)] = f(x0) = f(EX). 0



