
Math 525: Lecture 7

January 25, 2018

1 Expectation (general case)

In a previous lecture, we define the expectation of a discrete random variable. Armed now
with an intuitive understanding of expectations, let’s extend our definition to the general
case.

Definition 1.1. Let X be a random variable and n be a nonnegative integer. Let {Ek
n}k∈Z

be the partition of R defined by

Ek
n =

(

k

2n
,
k + 1

2n

]

.

Then, the n-th lower and upper dyadic approximations of X are the random variables Xn

and Xn defined by

Xn(ω) =
∑

k∈Z

k

2n
IEk

n
(X(ω)) and Xn(ω) =

∑

k∈Z

k + 1

2n
IEk

n
(X(ω)).

Note that IEk
n
◦ X is a random variable (IEk

n
is Borel measurable because Ek

n ∈ B(R)).
It is obvious from the definition that the lower and upper dyadic approximations of X are
discrete random variables and hence we know how to take their expectations (assuming they
are integrable). It is also useful to note that

k

2n
= inf Ek

n and
k + 1

2n
= maxEk

n.

Proposition 1.2. Let X be a random variable. For each nonnegative integer n,

1. Xn −Xn = 1/2n.

2. Xn ≤ Xn+1 < X ≤ Xn+1 ≤ Xn.

3. The dyadic approximations {X0, X
0
, X1, X

1
. . .} are either all integrable or all non-

integrable.

Proof.
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1. Let n be a nonnegative integer. The first claim follows from

Xn(ω)−Xn(ω) =
∑

k∈Z

k + 1

2n
IEk

n
(X(ω))−

∑

k∈Z

k

2n
IEk

n
(X(ω)) =

1

2n

∑

k∈Z

IEk
n
(X(ω)) =

1

2n
.

2. Suppose now that X(ω) ∈ Ek
n = (k/2n, (k + 1)/2n] for some particular k ∈ Z. Then,

Xn(ω) = k/2n and Xn(ω) = (k + 1)/2n. This establishes Xn(ω) < Xn(ω) ≤ Xn(ω).
Moreover, since Ek

n = E2k
n+1 ∪ E2k+1

n+1 , it follows that Xn+1(ω) ≥ 2k/2n+1 = k/2n and
Xn(ω) ≤ (2k + 2)/2n+1 = (k + 1)/2n, establishing the remaining inequalities.

3. Since X0−X0 = 1, any two dyadic approximations differ by at most one. If a random
variable Z and W differ by at most one (i.e., |Z −W | ≤ 1), then |Z| ≤ |W | + 1 and
|W | ≤ |Z|+ 1. Therefore, Z is integrable if and only if W is integrable.

The above result implies that if any particular dyadic approximation (e.g., X0) is inte-
grable, then

EX0 ≤ EX1 ≤ EX2 ≤ · · · ≤ EX
2
≤ EX

1
≤ EX

0
.

Moreover, since EXn − EXn = 1/2n, it follows that if the dyadic approximations are inte-
grable, EXn and EXn converge from below and above, respectively, to the same point as
n → ∞. This observation motivates the following definition:

Definition 1.3. A random variable X is integrable if X0 is integrable. In this case, we
define the expectation of X as

EX = lim
n→∞

EXn = lim
n→∞

EXn.

Next, we will “reprove” some properties of expectations that we already encountered in
the discrete case. In order to make matters simpler, we first introduce a bit of notation:

Definition 1.4. We say an event occurs almost surely (a.s.) if it occurs with probability
one.

Example 1.5. Let X and Y be random variables. We say X = Y a.s. if

P({X = Y }) = P({ω ∈ Ω: X(ω) = Y (ω)} = 1.

In other words, there could be outcomes ω ∈ Ω for which X(ω) 6= Y (ω), but the set of all
outcomes has probability zero. For all intents and purposes, X and Y are the “same”. In
this case, for any set B ∈ B(R),

P({X ∈ B}) = P({Y ∈ B}).

To see why, note that

P({X ∈ B}) = P({X ∈ B} ∩ {X = Y }) = P({Y ∈ B} ∩ {X = Y }) = P({Y ∈ B}).
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We are now ready to prove some properties of expectations:

Proposition 1.6. Let X and Y be random variables and let a ∈ R. Then,

1. If X = Y a.s., then Y is integrable if and only if X is, and if so, EX = EY .

2. If X and Y are integrable, so is aX + bY and

E [aX + bY ] = aEX + bEY.

3. If |X| ≤ |Y | and Y is integrable, then X is integrable.

4. If X and Y are integrable and X ≤ Y , then EX ≤ EY .

5. If X is integrable, EX ≤ E|X|.

The properties above are exactly those in the discrete case, but now they hold for general
random variables! We do have to do some work to prove them, however.

Proof. Recall that Xn − Xn = 1/2n. Since Xn ≤ X ≤ Xn, this implies |Xn − X| ≤ 1/2n,
which in turn implies

∣

∣Xn

∣

∣− 1/2n ≤ |X| ≤
∣

∣Xn

∣

∣+ 1/2n.

1. First, note that the statement is true in the discrete case. Now, if X = Y a.s., then
Xn = Y n a.s., from which the desired result follows.

2. We will use (3) to prove this. First, note that if sequences of random variables (Un)n
and (Wn)n satisfy E|Un −Wn| → 0 as n → ∞, then EUn → EWn as n → ∞ (this is
just an application of the triangle inequality). Moreover, note that

|aX + bY | ≤ |a| |X|+ |b| |Y | ≤ |a|
(
∣

∣X0

∣

∣+ 1
)

+ |b|
(
∣

∣Y 0

∣

∣+ 1
)

,

and hence aX + bY is integrable. Now, let Z = aX + bY . Then,

∣

∣Zn −
(

aXn + bY n

)
∣

∣ ≤
∣

∣Zn − Z
∣

∣+
∣

∣Z −
(

aXn + bY n

)
∣

∣

≤ 1/2n + |a|
∣

∣X −Xn

∣

∣ + |b|
∣

∣Y − Y n

∣

∣

≤ 1/2n (1 + |a|+ |b|)

→ 0.

Therefore,

lim
n→∞

E
[

Zn

]

= lim
n→∞

E
[

aXn + bY n

]

= lim
n→∞

aE
[

Xn

]

+ bE
[

Y n

]

= aEX + bEY.

3. First, note that |X0| ≤ |Y 0|+ 2 since

∣

∣X0

∣

∣− 1 ≤ |X| ≤ |Y | ≤
∣

∣Y 0

∣

∣+ 1.

Now, if Y is integrable, Y 0 is integrable by definition. In this case, X0 is integrable,
and hence X is integrable by definition.

3



4. Exercise.

5. Take Y = |X| in (4).

Example 1.7. Let X be any random variable and define its moment generating function
(MGF) by M(θ) = E[eθX ]. Note that the discussions of the previous lecture, albeit based
in discrete random variables, only used properties of the expectation. Therefore, we can
still talk about the moment generating function for an arbitrary random variable, and we
still have the nice result M (k)(0) = E[Xk] (assuming, of course, that M is differentiable in a
neighbourhood of zero).

Proposition 1.8. Let X and Y be independent and integrable random variables. Then, XY
is integrable and

E [XY ] = EXEY.

Proof. Consider first the discrete case:

E [|XY |] =
∑

i,j

|xi| |yj|P({X = xi} ∩ {Y = yj})

=
∑

i,j

|xi| |yj|P({X = xi})P({Y = yj})

=

(

∑

i

|xi|P({X = xi})

)(

∑

j

|yj|P({Y = yj})

)

= E [|X|]E [|Y |] .

This establishes that XY are integrable whenever X and Y . Repeating the same argument
now without the absolute value signs establishes E[XY ] = EXEY .

Now, let’s move on to the general case. If X and Y are integrable,

E
[
∣

∣XnY n −XY
∣

∣

]

= E
[
∣

∣XnY n −XnY +XnY −XY
∣

∣

]

≤ E
[
∣

∣Xn

∣

∣

∣

∣Y n − Y
∣

∣

]

+ E
[

|Y |
∣

∣Xn −X
∣

∣

]

≤ 1/2n ·
(

E
[
∣

∣Xn

∣

∣

]

+ E [|Y |]
)

→ 0.

Since
E
[

|XY | −
∣

∣XnY n

∣

∣

]

≤ E
[
∣

∣XnY n −XY
∣

∣

]

,

this implies that XY is integrable. Moreover, if X and Y are independent, so too are Xn

and Y n. This implies

E [XY ] = lim
n→∞

E
[

XnY n

]

= lim
n→∞

E
[

Xn

]

E
[

Y n

]

= EXEY

as desired.

Example 1.9. Consider n independent random variables X1, . . . , Xn with MGFs MXi
(θ) =

E[eθXi ]. Then,

MX1+···+Xn
(θ) = E

[

eθ(X1+···+Xn)
]

= E
[

eθX1

]

· · ·E
[

eθXn

]

= MX1
(θ) · · ·MXn

(θ).

In other words, the MGF of the sum is the product of the MGFs.
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