
Math 525: Lecture 6

January 23, 2018

1 Moments

Definition 1.1. Let X be a discrete random variable and k be a positive integer. Suppose
Xk is integrable. Then we call E[|X|k] the k-th absolute moment of X, E[Xk] the k-th raw
moment of X, and E[(X − E[X ])k] the k-th central moment of X.

Note that the first moment is the expectation and the second central moment is the
variance. The k-th raw moment is also sometimes simply called the k-th moment.

Example 1.2. Let X be a positive integer-valued random variable satisfying

P({X = n}) = c
1

n3

where c is a “normalizing constant” chosen such that

∑

n≥1

P({X = n}) = c
∑

n≥1

1

n3
= 1.

This random variable has a finite expectation:

E [X ] =
∑

n≥1

n

(

c
1

n3

)

= c
∑

n≥1

1

n2
< ∞.

However, its variance is infinite:

E
[
X2

]
=

∑

n≥1

n2

(

c
1

n3

)

= c
∑

n≥1

1

n
= ∞.

The same technique can be used to make a random variable whose first k moments are finite
but all of its subsequent moments are infinite.

Proposition 1.3. Let X and Y be discrete random variables and k be a positive integer. If
Xk and Y k are integrable, so too is (X + Y )k.
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Proof. For any real numbers x and y,

|x+ y|k ≤ (2max{|x| , |y|})k = 2k max{|x|k , |y|k} ≤ 2k |x|k + 2k |y|k .

Therefore,
|X + Y |k ≤ 2k |X|k + 2k |Y |k ,

from which the desired result follows by taking expectations of both sides.

Proposition 1.4. Let X be a discrete random variable and k be a positive integer. If Xk is
integrable, so too is Xj for each 0 ≤ j ≤ k.

Proof. For any real number x ≥ 0,

xj ≤ max
{
xk, 1

}
≤ xk + 1.

Therefore,
|X|j ≤ |X|k + 1,

from which the desired result follows by taking expectations of both sides.

Corollary 1.5. Let X be a discrete random variable and k be a positive integer. If Xk is
integrable, so too is (X − EX)k (and vice versa).

It is understood that the statement (X−EX)k is integrable requires also the integrability
of X (otherwise we would not even be able to talk about EX, let alone (X − EX)k).

Proof. Suppose Xk is integrable. Let Y = −EX and apply Proposition 1.3 to see that
(X − EX)k is integrable.

Suppose (X − EX)k is integrable. Then,

|X|k = |(X − EX) + EX|k ≤ (|X − EX|+ |EX|)k ≤
k∑

j=0

(
k

j

)

|X − EX|j |EX|k−j
.

Now take expectations of both sides and apply Proposition 1.4.

2 Moment generating functions

Last lecture, we looked at the probability generating function G of a discrete nonnegative

integer-valued random variable X,

G(t) = E
[
tX

]
.

In this lecture, we start by letting X be any discrete random variable and examining the
moment generating function M of X,

M(θ) = E
[
eθX

]
.
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As usual, we have been a bit cavalier in defining M , which is only well-defined at values of
θ ∈ R for which the random variable eθX is integrable. Remember the Taylor series for ex is

ex = 1 + x+
1

2
x2 +

1

6
x3 + · · · =

∑

n≥0

1

n!
xn.

If we substitute this into M(θ), we obtain

M(θ) = E

[
∑

n≥0

θn

n!
Xn

]

.

Now, we would like to distribute the expectation over the sum to conclude

M(θ) =
∑

n≥0

θn

n!
E [Xn] . (1)

However, while we know from last lecture that we can distribute the expectation over a finite

sum (from the property E[aX + bY ] = aEX + bEY ), we cannot argue about infinite sums
yet, so the conclusion (1) is just heuristic! We will defer a rigorous proof of this claim to a
future lecture. For the time being, let’s proceed assuming (1) is true. If we take derivatives
with respect to θ,

M ′(θ) =
∑

n≥1

θn−1

(n− 1)!
E [Xn]

M ′′(θ) =
∑

n≥2

θn−2

(n− 2)!
E [Xn]

...

M (k)(θ) =
∑

n≥k

θn−k

(n− k)!
E [Xn]

and we can conclude
M (k)(0) = E

[
Xk

]
, k = 1, 2, . . . (2)

Note that we have also ignored the fact that to evaluate the k-th derivative at θ0, we require
M to be defined in a neighborhood of θ0. Regardless, if we proceed ignoring this issue,
we deduce from (2) that the moment generating function generates the moments (perhaps
unsurprisingly, given its name).

Remark 2.1. Note that M(0) = 1 since M(0) = E[X0] = E[1]. This is true for any random
variable, since 1 is integrable.

3 Special discrete distributions

There are a handful of discrete distributions which come up frequently in applications. Our
last topic today is to study some of these special distributions and compute their moments.
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3.1 Bernoulli

A random variable X has a Bernoulli distribution if

P({X = 1}) = p and P({X = 0}) = 1− p

for some 0 ≤ p ≤ 1. We will often simply write X ∼ Bernoulli(p) to indicate such a random
variable.

Example 3.1. Toss a coin once, corresponding to the sample space Ω = {H, T}. Define X

by X(H) = 1 and X(T ) = 0. Then, X has a Bernoulli distribution.

The moment generating function of X ∼ Bernoulli(p) is

M(θ) = E
[
eθX

]
= eθ·0P({X = 0}) + eθ·1P({X = 1}) = (1− p) + eθp.

Note that M (k)(θ) = eθp. Therefore, EXk = M (k)(0) = p for all k = 1, 2, . . . From this, it
follows that

Var(X) = E
[
X2

]
− (EX)2 = p− p2 = p (1− p) .

3.2 Binomial

A random variable X has a binomial distribution with parameters n ∈ {1, 2, . . .} and 0 ≤
p ≤ 1 if

P({X = k}) =

(
n

k

)

pk (1− p)n−k
, k = 0, 1, 2, . . . , n.

We will often simply write X ∼ B(n, p) to indicate such a random variable. Note that the
above implies that X only takes values in {0, 1, . . . , n} with positive probability:

Proposition 3.2. Let X ∼ B(n, p). Then,

n∑

k=0

P({X = k}) = 1.

Proof. By the binomial theorem,
n∑

k=0

P({X = k}) =

n∑

k=0

(
n

k

)

pk (1− p)n−k = (p+ 1− p)n = 1n = 1.

Example 3.3. Toss the same coin n times. Let X be the number of heads witnessed in all
n coin tosses. Assume that the probability of getting heads on each toss is 0 ≤ p ≤ 1. Then,
X ∼ B(n, p).

To see this, consider the case in which the first k tosses result in heads (H) and the
remainder result in tails (T ). This is captured by the sample

HH · · ·H
︸ ︷︷ ︸

k times

TT · · ·T
︸ ︷︷ ︸

n−k times

.

This sample occurs with probability pk(1 − p)n−k. However, there are
(
n
k

)
permutations of

the letters above, from which we obtain the expression

P({X = k}) =

(
n

k

)

pk (1− p)n−k
.
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The moment generating function of X ∼ B(n, p) is

M(θ) = E
[
eθX

]
=

n∑

k=0

eθkP({X = k}) =
n∑

k=0

(
n

k

)
(
eθp

)k
(1− p)n−k =

((
eθ − 1

)
p+ 1

)n
.

Taking derivatives,

M ′(θ) = eθnpM(θ)(n−1)/n

M ′′(θ) = M ′(θ) + e2θ (n− 1)np2M(θ)(n−2)/n.

Therefore,

EX = M ′(0) = M(0)(n−1)/nnp = np

E
[
X2

]
= M ′′(0) = M ′(0) +M(0)(n−2)/n (n− 1)np2 = np (1 + (n− 1) p)

and hence

Var(X) = E
[
X2

]
− (EX)2 = np (1 + (n− 1) p)− (np)2 = np (1− p) .

3.3 Poisson

A random variable X has a Poisson distribution with parameter λ > 0 if

P({X = k}) =
λk

k!
e−λ, k = 0, 1, 2, . . .

We will often simply write X ∼ Poisson(λ) to indicate such a random variable. Note that
the above implies that X only takes values in {0, 1, 2, . . .} with positive probability:

Proposition 3.4. Let X ∼ Poisson(λ). Then,
∑

k≥0

P({X = k}) = 1.

Proof. By the Taylor expansion of ex,

∑

k≥0

P({X = k}) =
∑

k≥0

λk

k!
e−λ = e−λ

∑

k≥0

λk

k!
= e−λeλ = 1.

Before we motivate the Poisson distribution, let’s blindly compute its moment generating
function:

M(θ) = E
[
eθX

]
=

∑

k≥0

eθk
λk

k!
e−λ = e−λ

∑

k≥0

(
λeθ

)k

k!
= e−λeλe

θ

= eλ(e
θ−1).

Taking derivatives,

M ′(θ) = λeθM(θ)

M ′′(θ) = M ′(θ)
(
λeθ + 1

)
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Therefore,

EX = M ′(0) = λe0M(0) = λ

E
[
X2

]
= M ′′(0) = M ′(0)

(
λe0 + 1

)
= λ (λ+ 1)

and hence
Var(X) = E

[
X2

]
− (EX)2 = λ (λ+ 1)− λ2 = λ.

One way to motivate the Poisson distribution is through the following observation:

Proposition 3.5. Let λ > 0 and suppose that np → λ as n → ∞. Then,

lim
n→∞

(
n

k

)

pk (1− p)n−k =
λk

k!
e−λ, k = 0, 1, 2, . . .

We recognize the left hand side in the above from B(n, p). The above suggests that
Poisson(np) captures the number of successes in n trials, each having probability p, as the
number of trials becomes large.

Example 3.6. The number of market crashes per annum could be modelled as a Poisson(λ)
random variable with, for example, λ = 0.1 (one crash every ten years).
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