
Math 525: Lecture 4

January 16, 2018

1 Uniform distribution

Definition 1.1. We say X is uniformly distributed on [a, b] (written X ∼ U [a, b]) if it is a
random variable with distribution function

F (x) =























0 if x < a
x − a

b − a
if a ≤ x < b

1 if x ≥ b.

Figure 1: Uniform distribution

Intuitively, a uniform distribution tells us that any outcome in [a, b] is “equally likely”.

Remark 1.2. Actually, since F is continuous, no single outcome occurs with positive prob-
ability (recall that P({X = x}) = F (x) − F (x−)). What we really mean is that given two
disjoint subsets A and B of [a, b] which have the same “size”, X is equally likely to be in
either of them.

Example 1.3. The position of the pointer on a gameshow wheel can be modelled as a
random variable uniformly distributed on [0, 2π).
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Figure 2: Game show wheel

How do we actually construct a random variable with a uniform distribution? There are
a few ways to do this:

Example 1.4. Let Ω = R and Ax = {ω ∈ Ω: ω ≤ x}. Define the probability measure
P : B(R) → [0, 1] by

P(Ax) =























0 if x < a
x − a

b − a
if a ≤ x < b

1 if x ≥ b.

(Ω, B(R),P) is a probability space. Moreover, the random variable X defined by X(ω) = ω
is uniformly distributed on [a, b].

Remark 1.5. You may ask, at this point, why have we not defined P for sets not of the form
Ax? Remember that G = {Ax}x∈R generates B(R). It turns out that to define a probability
measure uniquely, it is sufficient to define it on generating sets (see, e.g., Corollary 1.8 of
Walsh, John B. Knowing the odds: an introduction to probability. Vol. 139. American
Mathematical Soc., 2012). The proof of this fact uses something called the monotone class

theorem, which is outside of the scope of this course.

We could have also taken a slightly different approach in defining a uniformly distributed
random variable:

Example 1.6. Let Ω = [a, b] and B([a, b]) = σ({[a, x] : x ∈ R}) (compare this with the
definition of B(R)). Define Ax as before and the probability measure P : B([a, b]) → [0, 1] by

P(Ax) =
x − a

b − a
.

(Ω, B([a, b]),P) is a probability space. Moreover, the random variable Y defined by Y (ω) = ω
is uniformly distributed on [a, b].
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The probability spaces in the last two examples are, for all intents and purposes, iden-
tical... even though X and Y are technically not the same mathematical objects. The first
probability space allows for points outside of [a, b] to be outcomes, but they occur with zero
probability. The second precludes them altogether.

2 Existence of random variables

In the last lecture, we showed that the distribution function F of any random variable is
nondecreasing and right-continuous with

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

Today, we’ll prove a “converse” of this fact.

Proposition 2.1. Let F : R → [0, 1] be nondecreasing and right-continuous with

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

Then, there exists a random variable whose distribution function is F .

Note the subtlety here: in the previous lecture, we started out with a random variable
and obtained a distribution function. The above proposition tells us we can go backwards:
start with a distribution function and obtain a random variable.

Proof. We only consider the case in which F is a bijection. The general case is more chal-
lenging (see, e.g., Theorem 2.14 of Walsh, John B. Knowing the odds: an introduction to

probability. Vol. 139. American Mathematical Soc., 2012).
Let X ∼ U [0, 1]. In the case that F is a bijection, the inverse map F −1 maps singletons

to singletons, and hence can be considered as a map from R to Ω. Therefore, we can define
Y by Y (ω) = F −1(X(ω)), or more succinctly, Y = F −1 ◦ X. Since F is monotone, so too is
F −1. As a technical note, this implies that F −1 is Borel measurable and hence Y is indeed
a random variable. Now, note that

P({Y ≤ y}) = P({F −1(X) ≤ y}) = P({X ≤ F (y)}) =
F (y) − 0

1 − 0
= F (y).

The proof above has a very important consequence for sampling from non-uniform dis-
tributions, as demonstrated below:

Example 2.2. You use a random number generator to generate n samples U1, . . . , Un ∼
U [0, 1]. You are given the distribution function F . Letting Xi = F −1(Ui), you obtain the
samples X1, . . . , Xn, which all have the distribution function F .

This shows us that we can always turn the problem of sampling from a non-uniform
distribution into one of sampling from a uniform distribution!

Example 2.3. Let U be a uniform random variable on [0, 1]. Let X = U2. Let F denote
the distribution function of X. Then, if 0 ≤ x < 1,

F (x) = P({X ≤ x}) = P({U2 ≤ x}) = P({U ≤ √
x}) =

√
x.
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3 Independence of random variables

In a previous lecture, we defined what it means for two events in a probability space (Ω, F ,P)
to be independent (if A, B ∈ F and P(A∩B) = P(A)P(B), we say A and B are independent).
We extend this definition now to random variables.

Definition 3.1. Two random variables X and Y are independent if for all x, y ∈ R,

P({X ≤ x, Y ≤ y}) = P({X ≤ x})P({Y ≤ y})

(i.e., the events {X ≤ x} and {X ≤ y} are independent).

Example 3.2. Let X be a random variable. Let Y = X2. Suppose 0 < P({X ≤ a}) < 1
for some a. Then,

P({X ≤ a, Y ≤ a2}) = P({X ≤ a, X2 ≤ a2}) = P({X ≤ a, X ≤ a}) = P({X ≤ a}).

That is, X and Y are not independent.

The above definition concerns only sets of the form {X ≤ x} and {Y ≤ y}. Can we
extend it to other sets?

Proposition 3.3. Let X and Y be independent random variables. Then,

P({X ∈ A} ∩ {Y ∈ B}) = P({X ∈ A})P({Y ∈ B})

whenever A = (p, q] and B = (r, s].

Proof. Note that

P{X ∈ (−∞, q], Y ∈ (r, s]} = P{X ≤ q, r < Y ≤ s}
= P{X ≤ q, Y ≤ s} − P{X ≤ q, Y ≤ r}
= P{X ≤ q}P{Y ≤ s} − P{X ≤ q}P{Y ≤ r}
= P{X ≤ q} (P{Y ≤ s} − P{Y ≤ r})

= P{X ≤ q}P{r < Y ≤ s}.

Now, use the same reasoning to get

P{p < X ≤ q, r < Y ≤ s} = P{p < X ≤ q}P{r < Y ≤ s}.

Remark 3.4. The previous proposition can be extended more generally to the case of A and
B in B(R) (see, e.g., Theorem 2.20 of Walsh, John B. Knowing the odds: an introduction to

probability. Vol. 139. American Mathematical Soc., 2012). The proof uses, once again, the
monotone class theorem.
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4 Independence of multiple events

Let’s generalize the concept of independence to families of random variables.

Definition 4.1. We say the family {Aα}α∈A ⊂ F is independent if for each positive integer
k ≤ n and {Ai1

, . . . , Aik
} ⊂ {Aα}α∈A,

P(Ai1
∩ · · · ∩ Aik

) = P(Ai1
) · · ·P(Aik

).

The notion of independence above is stronger than requiring each pair of events to be
independent:

Example 4.2. Toss two fair coins at the same time. Let A be the event that the first
coin is heads, B be the event that the second coin is heads, and C be the event that
the first and second coins disagree (i.e., one is heads and the other is tails). Note that
P(A) = P(B) = P(C) = 1/2.

Obviously, A and B are independent. To see that A and C are independent, note that

P(A ∩ C) = 1/4 = P(A)P(C).

Similarly, B and C are independent. This establishes that the three events are pairwise

independent. However, note that P(A ∩ B ∩ C) = P(∅) = 0 and P(A)P(B)P(C) 6= 0.
Therefore, the events A, B, C are not independent, despite being pairwise independent.

Definition 4.3. We say the family of random variables {Xα}α∈A are independent if for each
positive integer k ≤ n, {Xi1

, . . . , Xik
} ⊂ {Xα}α∈A, and x1, . . . , xk,

P({Xi1
≤ x1, . . . , Xik

≤ xn}) = P({Xi1
≤ x1}) · · ·P({Xik

≤ xn}).

Exercise 4.4. Let X and Y be i.i.d. integer-valued random variables (i.e., P({X is an integer}) =
1 and similarly for Y ). Let pn = P({X = n}). Then,

P({X = Y }) =
∞

∑

n=−∞

P({X = n})P({Y = n}) =
∞

∑

n=−∞

p2

n
.

Similarly,

P({X ≤ Y }) =
∞

∑

n=−∞

P({X = n})
∞

∑

m=n

P({Y = n}) =
∞

∑

n=−∞

pn

∞
∑

m=n

pm.

For example, suppose

pn =
6

π2

1

n2
if n > 0 and pn = 0 otherwise

(you can check that
∑∞

n=1
pn = 1). Then,

P({X = Y }) =
∞

∑

n=1

pn =
36

π4

∞
∑

n=1

1

n4
=

36

π4

π4

90
=

36

90
=

2

5
.

and

P({X ≤ Y }) =
∞

∑

n=1

pn

∞
∑

m=n

pm =
36

π4

∞
∑

n=1

1

n2

∞
∑

m=n

1

m2
=

36

π4

7π4

360
=

7

10
.
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5 Types of distributions

Definition 5.1. Let X be a random variable.

1. X has a discrete distribution if we can find a countable subset {xn}n ⊂ R for which

∞
∑

n=1

P{X = xn} = 1.

2. X has a continuous distribution if its distribution function F is continuous.

3. X has an absolutely continuous distribution if its distribution function can be written

F (x) =
∫

x

−∞
f(y)dy

for some integrable function f .

While many random variables fall into one of the above categories, there are still many
which do not! For example...

Example 5.2. Consider flipping a coin. If the coin is heads, you receive one dollar. Other-
wise, you receive Y dollars, where Y ∼ U [0, 1]. This random variable is

X = I{tails}Y + I{heads}.

Its distribution function is

F (x) =



















0 if x < 0
x

2
if 0 ≤ x < 1

1 if x ≥ 1.
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