Math 525: Lecture 3

January 11, 2018

1 Random variables

Consider rolling two dice, corresponding to the sample space
Q={(m,n): 1 <m,n <6}.

We can compute various numerical quantities based on the outcome of the rolls. For example,
the sum of the two dice
X(m,n)=m+n

or their product
Y (m,n) = mn.

As we will see shortly, both X and Y are examples of random variables on a probability
space. At least intuitively, a random variable is any function that maps the outcome of an
experiment (e.g., (m,n)) to a numerical value (e.g., m +n or mn).

Before we give a rigorous definition of a random variable, let’s compute as a motivating
example the probability that the two die sum to 5. Letting X (m,n) = m + n, this is simply

P({we Q: X =5}) = P({(1,4),(2,3), (3,2), (4,1)}) = 4/36 = 1/9.

To give the rigorous definition of a random variable, we review the concept of an inverse
map.

Definition 1.1. Let f: A — B be a function. Let H C B. Let
f'(H)={ac A: f(a) € H}.

We call f=! the inverse map of f. Note that the inverse map does not map points, but
rather sets.

We are now ready to give the rigorous definition of a random variable. For the remainder,
we will assume an underlying probability space (€2, F,P).

Definition 1.2. A random variable is a function X : 2 — R which satisfies, for all B € B(R),
X' B)={weQ: X(w) e B} F.

The Borel o-algebra is rather large, so the above definition is not easy to check. The following
proposition makes our lives a bit simpler.
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The subset H of B has an inverse image '{H) which is a subset of A,

Figure 1: Inverse map

Proposition 1.3. Suppose G generates the Borel o-algebra (i.e., o(G) = B(R)). Then,
X: Q — R is a random variable if and only if for each generating set G € G,

X @) e F.
Proof. We prove only the nontrivial direction. Let
M={BCR: X '(B)eF}.

By definition, we know that G € M. Therefore, o(G) C o(M). If M is a o-algebra, it
follows that
B(R) =0(G) C o(M) =M,

as desired. To check that M is a o-algebra, verify the three properties:
L X'0)=0eF.
2. If Be M, then X }(B°) = (X1(B))° € F.
3. If By, By, ... € M, then X ' (U,>1B,) = U1 X (B, € F. O

The above proposition is particularly useful when we take G to be the set of intervals
G = {(—o00,z]: x € R}. In this case...

Corollary 1.4. X: Q — R is a random variable if and only if for each x € R,
{weN: X(w)<zx}eF.
Proof. If G = (—o0, 2],

X HG) =X ((~00,7]) = {w e N X(w) <z}. O



We will often use the above corollary to prove something is a random variable. To simplify
notation, we often write

{we: X(w) <z}={X<z}.

The above means that for a random variable X, P({X < z}) (i.e., the probability that X is
at most x) is always well-defined. We define {X < z}, {X =z}, {X > 2z}, and {X > z}
similarly.

Proposition 1.5. Let X be a random variable. Then, {X < z},{X =z}, {X >z}, {X >
z} e F.

Proof. Let’s just do the case of {X < x}. We can write

X<ap=JixX<o-a),

q€Q
q>0

in which case we see that {X < x} is nothing other than a countable union of sets of the
form {X < a}, which we know to be in F. O

Proposition 1.6. Let X and Y be random variables (on a probability space (2, F,P)) and
let a be a real number. Then, the following are also random variables:

1. aX.
2. X+Y.
3. XY.

Y(w)/X(w) if X(w) #

4. Z defined by Z(w) = {0 if X(w)

Proof. Let x € R be arbitrary.

1. Note that {aX <z} ={X < =z/a}. Since X is a random variable, {X < xz/a} € F.

2. It is sufficient to prove that {X +Y >z} € Fsince {X+Y >z} ={X +Y <z}
Note that
{(X+Y>ap=|J{X>gn{y>z—q}.
q€Q
In this form, it is clear that {X +Y >z} € F.
3. For a real number a, define
+

a” = max{a,0} and  a~ =max{—a,0}

as its positive and negative parts. Since for any real number a we have a = a™ —a™,
it follows that

XY =(X"—X )Y -y ) =XV"+ XY - XY + XY,
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Therefore, it is sufficient to consider the case in which X and Y are nonnegative.
Moreover,

(XY >z} = J{X>gn{y >ua/q}.
=0

4. Tt is sufficient to consider the case of Y =1 since Y/X = Y (1/X). In this case,
{Z <z} =0n{Z <z}
=({(X#0ju{X =0} n{z <z}
— (X A0} N{Z < HU{X =0} {Z <2}
=({(X#0pn{l/X <zh)u({X =0}n{0<2}).

First, note that {0 < z} is either equal to () or 2, and hence {X =0} N{0 < z} € F.
We leave verifying that {X # 0} N {1/X < z} € F as an exercise. O

2 Distribution functions

Definition 2.1. The distribution function of a random variable X is the function F': R —
0, 1] defined by
Flz) = P{X < 2}).

The distribution function is sometimes called the cumulative distribution function (CDF).

Example 2.2. Flip a coin twice. Let X be the number of heads H which show up. Since

P{TT}) =1/4
P({HT,TH}) = 2/4
P{HH}) = 1/4,

we have that

0 if x <0
1/4 if 1
Floy= 0t e
3/4 ifx <2
1 if x > 2.

Remark 2.3. It now becomes clear why a random variable X requires {X <z} € F! It is so
that the dstribution function is well-defined at any point x.

In terms of the inverse function, note that
F(z) =P(X'((~00,2])).
Proposition 2.4. Let X be a random variable and F' be its distribution function. Then,

1. F' is nondecreasing.
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Figure 2: Examples of distribution functions

2. F is right continuous. That is, F'(z) = lim,, F(y) for each x.
3. lim,, o F(x) =0 and lim,_,, F(x) = 1.

Proof. Let A, = {X < x} so that F(z) = P(A,).
1. If z <y, then A, C A, and hence P(A4,) <P(4,).

2. Let (y,)n be a sequence converging to x from above. Then, we have A, D A4, O ---
and hence lim,,_, P(A,,) = P(N,>14,,) = P(A,).

3. Note that Ay D A 5 D -+ and hence lim,_,,,P(A_,) = ( w>14_,) = P(0) = 0.
Similarly, A; C Ay C -+ and hence lim,,,, P(4,) = P(U,>14,) = P(Q2) = 1.

O

Since F' is monotone, it follows that F' has at most countably many discontinuities. We

define
F(z—) =1lim F(x)

ylz
as the left-hand limit of F.
Proposition 2.5. Let X be a random variable with distribution function F. Then,
1. P{X < z}) = F(z—).
2. P{X =z}) = F(x) — F(x—).

3. Ifa<b, P({a < X <b})=F(b) — F(a).
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4. P{X > 2}) =1 — F().

The above implies that if F' is continuous, then P({X = z}) = 0 for all 2! This means
that there is zero probability of any particular realization of a random variable. Positive
probability is assigned only to ranges (e.g., {a < X < b}).

3 Indicator random variables

Definition 3.1. Let A € F. The indicator random variable on A is the function

1 ifweAd
I pu—
Aw) {0 ifwe Al

Note that for an indicator random variable 4, we have P({I4 = 1}) = P(A) and P({/4 =
0}) =P(A°) =1-P(A).

Example 3.2. You play a game in which you roll a dice, and if the number you roll is
greater than four, you get $2. Otherwise, you lose $1. How do we represent your winnings
as a random variable?

Let Q = {1,...,6}. Since this is a finite sample space, we can safely take F = 2%
and define P by P({w}) = 1/6 (each outcome is equally as likely). The random variable
corresponding to your winnings is

X(w) = 2oy (W) = Tu<ay (W)-
We’ll often express this more succinctly as
X =2Isay — Lu<ay-

Remark 3.3. There are many other common notations for indicator functions. It helps to be
aware of these:

Iy(w) = 1a(w) = xa(w) = [4](w).

4 Borel measurable functions

In closing this section, we introduce the notion of a Borel measurable function, which will
give us our final piece of insight as to why we care about Borel o-algebras.

Definition 4.1. We say f: R — R is a Borel measurable function (a.k.a. Borel function) if
for each B € B(R),
f71(B) € B(R).

That is, the inverse image of a Borel set is also a Borel set.

Proposition 4.2. If f: R — R is continuous, it is Borel measurable.



Proof. Let
M = {B CR: fYB) e B(]R)} .

As usual, we can show that M is a o-algebra (check). Let G be the set of open intervals
in R. Then, since f is continuous, G C M and as such, B(R) = ¢(G) C (M) = M as
desired. O

Exercise 4.3. Let X be a random variable and f: R — R be a Boreal measurable function.
Show that Y defined by Y (w) = f(X(w)) is a random variable.

The above implies, most importantly, that taking the composition of a continuous func-
tion f and a random variable X yields a new random variable.



