
Math 525: Lecture 3

January 11, 2018

1 Random variables

Consider rolling two dice, corresponding to the sample space

Ω = {(m,n) : 1 ≤ m,n ≤ 6} .

We can compute various numerical quantities based on the outcome of the rolls. For example,
the sum of the two dice

X(m,n) = m+ n

or their product
Y (m,n) = mn.

As we will see shortly, both X and Y are examples of random variables on a probability
space. At least intuitively, a random variable is any function that maps the outcome of an
experiment (e.g., (m,n)) to a numerical value (e.g., m+ n or mn).

Before we give a rigorous definition of a random variable, let’s compute as a motivating
example the probability that the two die sum to 5. Letting X(m,n) = m+ n, this is simply

P({ω ∈ Ω: X = 5}) = P({(1, 4), (2, 3), (3, 2), (4, 1)}) = 4/36 = 1/9.

To give the rigorous definition of a random variable, we review the concept of an inverse
map.

Definition 1.1. Let f : A → B be a function. Let H ⊂ B. Let

f−1(H) = {a ∈ A : f(a) ∈ H} .

We call f−1 the inverse map of f . Note that the inverse map does not map points, but
rather sets.

We are now ready to give the rigorous definition of a random variable. For the remainder,
we will assume an underlying probability space (Ω,F ,P).

Definition 1.2. A random variable is a function X : Ω → R which satisfies, for all B ∈ B(R),

X−1(B) ≡ {ω ∈ Ω: X(ω) ∈ B} ∈ F .

The Borel σ-algebra is rather large, so the above definition is not easy to check. The following
proposition makes our lives a bit simpler.
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Figure 1: Inverse map

Proposition 1.3. Suppose G generates the Borel σ-algebra (i.e., σ(G) = B(R)). Then,
X : Ω → R is a random variable if and only if for each generating set G ∈ G,

X−1(G) ∈ F .

Proof. We prove only the nontrivial direction. Let

M =
{

B ⊂ R : X−1(B) ∈ F
}

.

By definition, we know that G ⊂ M. Therefore, σ(G) ⊂ σ(M). If M is a σ-algebra, it
follows that

B(R) = σ(G) ⊂ σ(M) = M,

as desired. To check that M is a σ-algebra, verify the three properties:

1. X−1(∅) = ∅ ∈ F .

2. If B ∈ M, then X−1(Bc) = (X−1(B))c ∈ F .

3. If B1, B2, . . . ∈ M, then X−1(∪n≥1Bn) = ∪n≥1X
−1(Bn) ∈ F .

The above proposition is particularly useful when we take G to be the set of intervals
G = {(−∞, x] : x ∈ R}. In this case...

Corollary 1.4. X : Ω → R is a random variable if and only if for each x ∈ R,

{ω ∈ Ω: X(ω) ≤ x} ∈ F .

Proof. If G = (−∞, x],

X−1(G) = X−1((−∞, x]) = {ω ∈ Ω: X(ω) ≤ x} .
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We will often use the above corollary to prove something is a random variable. To simplify
notation, we often write

{ω ∈ Ω: X(ω) ≤ x} = {X ≤ x} .

The above means that for a random variable X, P({X ≤ x}) (i.e., the probability that X is
at most x) is always well-defined. We define {X < x}, {X = x}, {X ≥ x}, and {X > x}
similarly.

Proposition 1.5. Let X be a random variable. Then, {X < x}, {X = x}, {X ≥ x}, {X >
x} ∈ F .

Proof. Let’s just do the case of {X < x}. We can write

{X < x} =
⋃

q∈Q
q>0

{X ≤ x− q} ,

in which case we see that {X < x} is nothing other than a countable union of sets of the
form {X ≤ a}, which we know to be in F .

Proposition 1.6. Let X and Y be random variables (on a probability space (Ω,F ,P)) and
let a be a real number. Then, the following are also random variables:

1. aX.

2. X + Y .

3. XY .

4. Z defined by Z(ω) =

{

Y (ω)/X(ω) if X(ω) 6= 0

0 if X(ω) = 0.

Proof. Let x ∈ R be arbitrary.

1. Note that {aX ≤ x} = {X ≤ x/a}. Since X is a random variable, {X ≤ x/a} ∈ F .

2. It is sufficient to prove that {X + Y > x} ∈ F since {X + Y > x} = {X + Y ≤ x}c.
Note that

{X + Y > x} =
⋃

q∈Q

{X > q} ∩ {Y > x− q} .

In this form, it is clear that {X + Y > x} ∈ F .

3. For a real number a, define

a+ = max{a, 0} and a− = max{−a, 0}

as its positive and negative parts. Since for any real number a we have a = a+ − a−,
it follows that

XY =
(

X+ −X−
) (

Y + − Y −
)

= X+Y + +X+Y − −X−Y + +X−Y −.
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Therefore, it is sufficient to consider the case in which X and Y are nonnegative.
Moreover,

{XY > x} =
⋃

q∈Q
q>0

{X > q} ∩ {Y > x/q} .

4. It is sufficient to consider the case of Y = 1 since Y/X = Y (1/X). In this case,

{Z ≤ z} = Ω ∩ {Z ≤ z}

= ({X 6= 0} ∪ {X = 0}) ∩ {Z ≤ z}

= ({X 6= 0} ∩ {Z ≤ z}) ∪ ({X = 0} ∩ {Z ≤ z})

= ({X 6= 0} ∩ {1/X ≤ z}) ∪ ({X = 0} ∩ {0 ≤ z}) .

First, note that {0 ≤ z} is either equal to ∅ or Ω, and hence {X = 0} ∩ {0 ≤ z} ∈ F .
We leave verifying that {X 6= 0} ∩ {1/X ≤ z} ∈ F as an exercise.

2 Distribution functions

Definition 2.1. The distribution function of a random variable X is the function F : R →
[0, 1] defined by

F (x) = P({X ≤ x}).

The distribution function is sometimes called the cumulative distribution function (CDF).

Example 2.2. Flip a coin twice. Let X be the number of heads H which show up. Since

P({TT}) = 1/4

P({HT, TH}) = 2/4

P({HH}) = 1/4,

we have that

F (x) =



















0 if x < 0

1/4 if x < 1

3/4 if x < 2

1 if x ≥ 2.

Remark 2.3. It now becomes clear why a random variable X requires {X ≤ x} ∈ F ! It is so
that the dstribution function is well-defined at any point x.

In terms of the inverse function, note that

F (x) = P(X−1((−∞, x]) ).

Proposition 2.4. Let X be a random variable and F be its distribution function. Then,

1. F is nondecreasing.
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Figure 2: Examples of distribution functions

2. F is right continuous. That is, F (x) = limy↓x F (y) for each x.

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Proof. Let Ax = {X ≤ x} so that F (x) = P(Ax).

1. If x ≤ y, then Ax ⊂ Ay and hence P(Ax) ≤ P(Ay).

2. Let (yn)n be a sequence converging to x from above. Then, we have Ay1 ⊃ Ay2 ⊃ · · ·
and hence limn→∞ P(Ayn) = P(∩n≥1Ayn) = P(Ax).

3. Note that A−1 ⊃ A−2 ⊃ · · · and hence limn→∞ P(A−n) = P(∩n≥1A−n) = P(∅) = 0.
Similarly, A1 ⊂ A2 ⊂ · · · and hence limn→∞ P(An) = P(∪n≥1An) = P(Ω) = 1.

Since F is monotone, it follows that F has at most countably many discontinuities. We
define

F (x−) = lim
y↑x

F (x)

as the left-hand limit of F .

Proposition 2.5. Let X be a random variable with distribution function F . Then,

1. P({X < x}) = F (x−).

2. P({X = x}) = F (x)− F (x−).

3. If a < b, P({a < X ≤ b}) = F (b)− F (a).
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4. P({X > x}) = 1− F (x).

The above implies that if F is continuous, then P({X = x}) = 0 for all x! This means
that there is zero probability of any particular realization of a random variable. Positive
probability is assigned only to ranges (e.g., {a < X ≤ b}).

3 Indicator random variables

Definition 3.1. Let A ∈ F . The indicator random variable on A is the function

IA(ω) =

{

1 if ω ∈ A

0 if ω /∈ A.

Note that for an indicator random variable IA, we have P({IA = 1}) = P(A) and P({IA =
0}) = P(Ac) = 1− P(A).

Example 3.2. You play a game in which you roll a dice, and if the number you roll is
greater than four, you get $2. Otherwise, you lose $1. How do we represent your winnings
as a random variable?

Let Ω = {1, . . . , 6}. Since this is a finite sample space, we can safely take F = 2Ω

and define P by P({ω}) = 1/6 (each outcome is equally as likely). The random variable
corresponding to your winnings is

X(ω) = 2I{ω>4}(ω)− I{ω≤4}(ω).

We’ll often express this more succinctly as

X = 2I{ω>4} − I{ω≤4}.

Remark 3.3. There are many other common notations for indicator functions. It helps to be
aware of these:

IA(ω) ≡ 1A(ω) ≡ χA(ω) ≡ [A](ω).

4 Borel measurable functions

In closing this section, we introduce the notion of a Borel measurable function, which will
give us our final piece of insight as to why we care about Borel σ-algebras.

Definition 4.1. We say f : R → R is a Borel measurable function (a.k.a. Borel function) if
for each B ∈ B(R),

f−1(B) ∈ B(R).

That is, the inverse image of a Borel set is also a Borel set.

Proposition 4.2. If f : R → R is continuous, it is Borel measurable.
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Proof. Let
M =

{

B ⊂ R : f−1(B) ∈ B(R)
}

.

As usual, we can show that M is a σ-algebra (check). Let G be the set of open intervals
in R. Then, since f is continuous, G ⊂ M and as such, B(R) = σ(G) ⊂ σ(M) = M as
desired.

Exercise 4.3. Let X be a random variable and f : R → R be a Boreal measurable function.
Show that Y defined by Y (ω) = f(X(ω)) is a random variable.

The above implies, most importantly, that taking the composition of a continuous func-
tion f and a random variable X yields a new random variable.

7


