
Math 525: Lecture 25

April 17, 2018

Last class, we saw that the identity

∫

[0,1]D
f ≡

∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xD)dx1 · · · dxD = E [f(X1, . . . , XD)]

where X1, . . . , XD ∼ U [0, 1] independent and f is Borel measurable

yields a method (called the Monte Carlo method) for computing integrals: sample the func-
tion N times to obtain observations Y1, . . . , YN ∼ f(X1, . . . , XD). Then, compute

SN

N
=

Y1 + · · ·+ YN

N

which, by the law of large numbers, approximates EY .

1 Computational effort of Monte Carlo

Instead of Monte Carlo, consider approximating the integral using Riemann sums:
∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xD)dx1 · · · dxD ≈
∑

1≤i1,...,iD≤N

f(i1∆x, . . . , iD∆x)(∆x)D where ∆x = N−1.

Note, in particular, that the function f has to be evaluated ND times. This is referred to as
the curse of dimensionality : for a given accuracy, we must increase the number of function
evaluations exponentially as the dimension increases. The same is true of other “quadrature
methods” (e.g., trapezoid rule, Simpson’s rule, etc.), it does not apply only to Riemann sums.

The appeal of Monte Carlo is that unlike quadrature rules, it requires only N function
evaluations to obtain O(1/

√
N) error (by the CLT). Therefore, while Monte Carlo might be

ill-suited for computing low-dimensional integrals (e.g., D = 1 or D = 2), it is well-suited to
computing high-dimensional ones.

2 Quasi-Monte Carlo

Discrepancy

Consider the two-dimensional (D = 2) case. Sampling Z ∼ U([0, 1]× [0, 1]) using a uniform
distribution N = 1000 times, we obtain the following scatter plot:
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In particular, there are regions of high density (lots of points) and regions of low density
(few points). In hopes of obtaining a better error than O(1/

√
N), quasi-Monte Carlo uses

instead a deterministic sequence (zn)n in [0, 1]D. This sequence is chosen to have “good
density properties”. Then, the integral

∫

[0,1]D
f is approximated by

1

N

N
∑

n=1

f(zn) ≡ 1

N

N
∑

n=1

f(zn1 , . . . , z
n
D).

What does it mean for a sequence to have “good density properties”? One way to characterize
this is through by discrepancy:

Definition 2.1. The discrepancy of a nonempty set P = {z1, . . . , zN} ⊂ [0, 1]D is

d(P ) = sup
06ai<bi61
i=1,...,D

∣

∣

∣

∣

∣

∣

D
∏

i=1

(bi − ai)−

∣

∣

∣
P ∩

∏D

i=1[ai, bi)
∣

∣

∣

N

∣

∣

∣

∣

∣

∣

.

This definition looks scarier than it is. Let’s go over it carefully. For some choice of
endpoints 0 ≤ ai < bi ≤ 1 (i = 1, . . .D), let A =

∏D

i=1[ai, bi). Note that A is just a “hyper-

rectangle” in the hyper-cube [0, 1]D. Therefore, the product
∏D

i=1(bi − ai) is nothing other
than the volume of A. Moreover, the quantity |P ∩ A| is the number of points that are in
A. Therefore, the discrepancy corresponds to picking a hyper-rectangle that has the “worst
density” with respect to the points P = {z1, . . . , zn}.
Definition 2.2. The star discrepancy of a nonempty set P = {z1, . . . , zN} ⊂ [0, 1]D is

d∗(P ) = sup
0<ui61
i=1,...,D

∣

∣

∣

∣

∣

∣

D
∏

i=1

ui −

∣

∣

∣
P ∩

∏D

i=1[0, ui)
∣

∣

∣

N

∣

∣

∣

∣

∣

∣

.
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The star discrepancy is almost identical to the discrepancy: all that differs is that we fix
our attention to hyper-rectangles of the form

∏D

i=1[0, ui).

Proposition 2.3. For any nonempty finite set P ⊂ [0, 1]D,

d∗(P ) ≤ d(P ) ≤ 2Dd∗(P ).

Proof. The leftmost inequality is trivial. As for the rightmost inequality, let’s first consider
the one-dimensional case (D = 1). Note that

[a, b) = [0, b) \ [0, a).
Therefore,

|P ∩ [a, b)| = |P ∩ ([0, b) \ [0, a))| = |P ∩ [0, b)| − |P ∩ [0, a)| .
Putting this all together,

d(P ) = sup
0≤a<b≤1

∣

∣

∣

∣

(b− a)− |P ∩ [a, b)|
N

∣

∣

∣

∣

= sup
0≤a<b≤1

∣

∣

∣

∣

(

b− |P ∩ [0, b)|
N

)

−
(

a− |P ∩ [0, a)|
N

)
∣

∣

∣

∣

≤ sup
0<b≤1

∣

∣

∣

∣

b− |P ∩ [0, b)|
N

∣

∣

∣

∣

+ sup
0≤a<1

∣

∣

∣

∣

a− |P ∩ [0, a)|
N

∣

∣

∣

∣

= d∗(P ) + d∗(P ) = 2d∗(P ).

The same idea extends to higher dimensions (D > 1).

Koksma–Hlawka inequality

Proposition 2.4 (Koksma–Hlawka). Let P = {z1, . . . , zN} be a nonempty subset of [0, 1]D.

Then,
∣

∣

∣

∣

∣

1

N

N
∑

n=1

f(zn)−
∫

[0,1]D
f

∣

∣

∣

∣

∣

≤ VHK(f)d
∗(P )

where VHK(f) is the Hardy–Krause variation of f .

The proof of this result (and even the definition of VHK(·)) is far out of the scope of this
class. However, we can interpret this result as telling us that for any “well-behaved” function
f , the error in quasi-Monte Carlo using points P = {z1, . . . , zN} is at most

Cfd
∗(P )

where Cf is some positive constant that depends only on f .
In other words, the quality of quasi-Monte Carlo depends only on the (star) discrepancy

of the sequence we choose. In particular, we would like to pick the sequence to have the
lowest (star) discrepancy possible. We should mention at this point that it is not known
what the lowest possible (star) discrepancy is:

Conjecture 2.5. There is a constant CD depending only on the dimension D such that

d∗(P ) ≥ CD

(lnN)D−1

N

for any nonempty set P = {z1, . . . , zN} ⊂ [0, 1]D.

The conjecture has been verified for D = 1 (C1 = 1/2) and D = 2 (C2 =
1
8
eW−1(−

1

2e
)+1 =

0.0233352886063546 . . .) but remains open for D ≥ 3.
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Van der Corput (and Halton) sequences

The Van der Corput sequence is a simple example of a low discrepancy sequence. It is a
sequence in one dimension (D = 1), constructed as follows. Fix a base b. For a positive
integer n, let n = (· · ·n1n0)b denote its base b expansion (i.e., 0 ≤ nj < b is the j-th digit of
n in base b). Then,

n = n0 + n1b+ n2b
2 + · · ·

The n-th element of the Van der Corput sequence is then given by

ϕb(n) = n0b
−1 + n1b

−2 + n2b
−3 + · · ·

In other words, the Van der Corput sequence “reverses” the base b expansion of the natural
numbers.

Example 2.6. In b = 2, note that 0 = (0)2, 1 = (1)2, 2 = (10)2, 3 = (11)2, 4 = (100)2, etc.
Therefore, the Van der Corput sequence is

{(0)2, (0.1)2, (0.01)2, (0.11)2, (0.001)2, . . .} .

Converting these numbers back to base 10,

{0, 0.5, 0.25, 0.75, 0.125, . . .} .

Remark 2.7. The Halton sequences generalize the Van der Corput sequences to D > 1.

The following is a slight generalization of Van der Corput’s original result (1935) due to
S. Harber (1966):

Proposition 2.8. Let P = {ϕ2(0), . . . , ϕb(N − 1)} be the first N > 1 elements of the Van

der Corput sequence in base b = 2. Then,

Nd∗(P ) ≤ 1

3
log2N + C

for some C > 0.

Sobol sequences

Probably the most popular low discrepancy sequence is the Sobol sequence. I mention it
here only so that you are aware of it by name. Figure 1 shows the first 1000 points of the
Sobol sequence (compare with the 1000 uniform samples at the beginning of this lecture).

Algorithm 1 gives some C++ code to compute π with a two-dimensional Sobol sequence
(zn)n≥1. Setting N to be 10 million, we obtain π ≈ 3.1415952 (much more accurate than
the plain Monte Carlo approach we saw last class).
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Figure 1: 2d Sobol sequence

Algorithm 1 quasi-Monte Carlo method to approximate π

#include <iomanip>
#include <iostream>

// h t t p :// peop le . sc . f su . edu/~ j bur kard t /cpp_src/ sobo l / sobo l . html
#include " sobo l . hpp"

int main ( )
{

const int N = 10000000;
long long int seed = 1 ;
long long int count = 0 ;

double r [ 2 ] ;
for ( int n = 0 ; n < N; ++n)
{

i8_sobol (2 , &seed , r ) ;
const bool i n s i d e_c i r c l e = r [ 0 ] ∗ r [ 0 ] + r [ 1 ] ∗ r [ 1 ] <= 1 . ;
i f ( i n s i d e_c i r c l e ) { ++count ; }

}

const double pi_approximate = 4 . ∗ ( (double) count ) / N;
std : : cout << std : : s e t p r e c i s i o n (16) << pi_approximate << std : : endl ;

return 0 ;
}

5


