Math 525: Lecture 24

April 12, 2018

1 Conditional distribution and expectations

Let X and Y be random variables. If the event {X = x} occurs with positive probability,
we can define the conditional distribution function by

Frix(yla)=P{Y <y| X =ua}.
If Y is also integrable, we can also define the conditional expectation of Y given X = x:

E [VIix—)]
P{X =z}

We saw in a previous class that if in addition to being integrable, Y is discrete, the above
simplifies:

E[Y | X =] =

EY | X = a] = 2 y”PIP;{?X::y;’}X

:x}:ZynP{Y:yn\X:x}.

However, when X has a continuous distribution, the event {X = x} has probability zero.
While it is possible to define E[Y | -] in a general way that avoids this issue, doing so requires
knowledge of some concepts from measure theory (e.g., Radon-Nikodym derivatives). Instead
of working in the most general setting, we will instead tackle the case in which X and Y
admit a joint density fxy.

To motivate our definition of conditional distribution in this setting, suppose events of
the form {x < X <z + h} have positive probability (where A > 0) and consider

P(Y<y|lz<X<z+h).

Since X and Y admit a joint density,
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If h is small, we expect the above to be approximately
h’fi/oo fXY(xv U)dU . f;yoo fXY(‘T7 U>dv . /y (ny(ZL',’U)> dv
hfx(x) fx(z) —o0 fx(x) '
This motivates the definition below.




Definition 1.1. Let X and Y be random variables which admit a joint density fxy. We
can define the conditional density of Y given X = x by

frix(y|z) = fx(z)

0 otherwise.

The conditional distribution function of Y given X = x is

Fyix(y | z) = /_y fyix(v ] z)dv.

The conditional expectation of Y given X = x is

EY | X =] = / Ty fx(y | 2)dy.

—0o0

Remark 1.2. If X and Y are independent in the above, the conditional density of Y given
X = x should be independent of X. Indeed, then

_ fxv(my)
frix(y]z) = ) fr(y).

Let’s also verify that the conditional density works as desired. Indeed,
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Definition 1.3. Suppose X is a discrete random variable or that X and Y admit a joint
density. Suppose Y is integrable, so that the function ¢ given by

(@) =E[Y | X = 4]

is well-defined (if X is discrete, we can safely ignore points at which {X = z}). Then, the
conditional expectation of Y given X is

E[Y | X]= o X.

Unlike the previous definition, we have not specified the value of X in the conditional
expectation. Therefore, unlike E[Y | X = z| (which is a scalar), E[Y" | X] is itself a random
variable. We now prove what is known as the tower property of expectations:*

! Actually, the tower property is more general, applying to the more general notion of conditional expec-
tation we hinted at before.



Proposition 1.4. Let X and Y be random wvariables which admit a joint density fxy.

Suppose fx # 0. If Y is integrable, then E[Y | X]| is also integrable and
EE[Y | X]] =EY.
Proof. First, suppose Y is positive. Then,

EEY [ X]] =E[(X)]
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If Y is not positive, we can split it into its positive and negative parts Y =Y+ — Y.

O

The tower property also holds for discrete random variables, in which case the intuition

is very easy to understand:

Example 1.5. Consider two bags, labelled a and b. We pick bag a with probability P and
bag b with probability 1 —p. We use the random variable X to indicate which bag we picked

(i.e., X takes values in {a,b}). Both bags are filled with green and red balls. Define

# of green balls in bag a
total # of balls in bag a

# of green balls in bag b
total # of balls in bag b

CL:

and Dy =

From the bag we have chosen, we pick a single ball. Let

v — 1 if we picked a green ball
~ |0 if we picked a red ball.

Then,
EY | X =a|=p, and E[Y | X =] =p,.

Therefore,

EEY | X]|=PE[Y |X=a)+(1—P)E[Y | X =b] = Ppa+ (1= P)p, =E[Y].
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Figure 1: Circle with area 7

2 Introduction to Monte Carlo methods

A Monte Carlo method is any algorithm that exploits the law of large numbers to compute
a (determinstic) quantity. This is best motivated by example:

Example 2.1. Suppose we want to approximate the value of w. Recall that for a (Borel)
function f,

E[f(X)] =

The same is true in higher dimensions:

/bf(x)dx if X ~ Ula,b|.

1 1

E[f(X,Y)] = —— 71—

d b
//f(x,y)dxdy if X ~ Ula,b] and Y ~ Ule, d].

Recall that 7 is the area of a unit circle. That is, letting C' = {(z,y): 2* + y* < 1},

11
T = / / Io(x,y)dxdy.
—1J-1

E[[o(X,Y)] = % where  X,Y ~ U[-1,1].

In other words,

Let X,,,Y, ~ U[—1,1]. Then, by the strong law of large numbers,
i Io(X1,Y1)++Ic(Xn,YN) 7
im

e N = Z a.S.

This gives us a very simple algorithm to approximate 7:
1. Pick a positive integer N and set Sy to zero.

2. Generate two (independent) random variables X and Y from the uniform distribution
U[-1,1]. If X2+ Y? < 1, increment Sy by one.

3. Repeat step (2) n times. Then, 7/4 ~ Sy /N.
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Some MATLAB code for this procedure is given below:

Algorithm 1 Monte Carlo method to approximate m

% Generate (X, Y) pairs
pairs = 2 x rand (2, N) — 1;

% Count which pairs are in the circle
S N = sum(sum( pairs.”2) <= 1);

pi_approximate = 4 x (S N / N);

With N equal to 10 million, below are some results of running the code:

Run Result

3.1414432
3.1416316
3.1418980
3.1416388
3.1424888

Uk W N~

Even though we used 10 million samples in the above, our approximation is only accurate
up to three significant digits! The slow convergence? is explained by the CLT, which says

W(%—%) 2 N(0,0)

where 02 = Var(Io(X,Y)). With a slight abuse of notation, we may write

v =0 ()

‘ﬂ-approximate - 7T| - ‘4W — T

to represent this fact.

2There are much more effective ways to compute 7 (e.g., Chudnovsky algorithm), but they do not have
to do with Monte Carlo.



