
Math 525: Lecture 23

April 10, 2018

1 Joint distribution

In previous lectures, we have dealt with only one-dimensional distribution functions (i.e.,
F (x) = P{X ≤ x}). In this lecture, we extend our findings to higher dimensions.

Definition 1.1. The joint distribution of two random variables X and Y (defined on the
same probability space) is the function F : R× R → [0, 1] defined by

F (x, y) = P {X ≤ x, Y ≤ y} .

If we wish to be explicit, we may write FXY .

Remark 1.2. Similarly, we can define F (x1, . . . , xn) = P{X1 ≤ x1, . . . , Xn ≤ xn} as the joint
distribution of n random variables. Since this extension is trivial, we work solely with the
two dimensional case for ease of notation.

Recall that distribution functions satisfy some distinctive properties. Let’s now extend
those to joint distribution functions.

Proposition 1.3. Let y be arbitrary. Then,

1. x 7→ F (x, y) is nondecreasing.

2. x 7→ F (x, y) is right-continuous.

3. limx→−∞ F (x, y) = 0.

4. limx→∞ F (x, y) = P{Y ≤ y}.

Proof. Let By = {Y ≤ y} and for each x, let Ax = {X ≤ x}.

1. Since Ax1
⊂ Ax2

whenever x1 ≤ x2, then Ax1
∩ By ⊂ Ax2

∩ By and hence F (x1, y) =
P(Ax1

∩ By) ≤ P(Ax2
∩By) = F (x2, y).

2. Let x be arbitrary and (xn)n≥1 be a sequence with xn ↓ x. Then,

Ax1
∩By ⊃ Ax2

∩By ⊃ · · ·
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By continuity of measure,

lim
n→∞

F (xn, y) = lim
n→∞

P(Axn
∩ By) = P

(
⋂

n≥1

(Axn
∩By)

)

= P

((
⋂

n≥1

Axn

)

∩ By

)

= P (Ax ∩By) = F (x, y).

3. Note that A−1 ⊃ A−2 ⊃ · · · and hence by continuity of measure,

lim
n→∞

F (−n, y) = lim
n→∞

P(A−n ∩By) = P(∅) = 0.

4. Note that A1 ⊂ A2 ⊂ · · · and hence by continuity of measure,

lim
n→∞

F (n, y) = lim
n→∞

P(An ∩ By) = P(By).

Note that the last point tells us that we can retrieve the distribution function of Y by
taking limits in x. That is, F (∞, y) ≡ limx→∞ F (x, y) = FY (y), where FY (y) = P{Y ≤ y}
defines the distribution function of Y . We call F (∞, y) the marginal distribution of Y . The
act of taking limits in x is called marginalization (i.e., “summing out” the variable you are
not interested in).

Corollary 1.4. Let FY be the distribution function of Y . If FY 6= 0, then, x 7→ F (x, y)/FY (y)
is a distribution function.

Indeed, we can go a little further in our claim:

F (x, y)

FY (y)
=

P {X ≤ x, Y ≤ y}

P{Y ≤ y}
= P(X ≤ x | Y ≤ y).

Proof. We proved that x 7→ F (x, y)/FY (y) is nondecreasing, right-continuous, its limit as
x → −∞ is zero and its limit as x → ∞ is

lim
x→∞

F (x, y)

FY (y)
=

FY (y)

FY (y)
= 1.

Using the same ideas as above (involving continuity of measure) we can prove a few more
facts about joint distribution functions. We state them without proof.

Proposition 1.5.

1. (x, y) 7→ F (x, y) is nondecreasing with respect to the element-wise partial order (i.e.,
F (x1, y1) ≤ F (x2, y2) whenever x1 ≤ x2 and y1 ≤ y2).

2. limx,y→∞ F (x, y) = 1.
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As usual, we can define F (x−, y) = limt↑x F (t, y), F (x, y−) = lims↑y F (x, s), and F (x−, y−) =
limt↑x,s↑y F (t, s). We use the notation x ↑ y to mean that x converges to y strictly from below
(i.e., x < y and x → y).1

Proposition 1.6. Let x1 < x2 and y1 < y2. Then,

1. P{X ≤ x2, Y < y2} = F (x2, y2−).

2. P {X < x2, Y ≤ y2} = F (x2−, y2).

3. P {X < x2, Y < y2} = F (x2−, y2−).

4. P{x1 < X ≤ x2, y1 < Y ≤ y2} = F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1).

5. P{X = x1, Y = y1} = F (x1, y1)− F (x1−, y1)− F (x1, y1−) + F (x1−, y1−).

Definition 1.7. If X and Y are discrete random variables, their joint probability mass
function p : R× R → [0, 1] (written pXY if we wish to be explicit) is defined by

pXY (x, y) = P {X = x, Y = y} .

In this case, the corresponding joint distribution function is given by

FXY (x, y) =
∑

u≤x,v≤y

pXY (u, v).

Note that this sum is well defined since even though the set A = {(u, v) : u ≤ x, v ≤ y}
is uncountable, there are only countably many elements (u, v) ∈ A such that pXY (u, v) is
nonzero.

2 Absolutely continuous distributions

Definition 2.1. We say F is absolutely continuous if it can be written

F (x, y) =

∫ y

−∞

∫ x

−∞

f(u, v)dudv

for some integrable function f . We call f the joint density of X and Y (sometimes written
fXY to be explicit).

From the definition,

P {x1 < X ≤ x2, y1 < Y ≤ y2} =

∫ x2

x1

∫ y2

y1

f(x, y)dxdy.

More generally, for any Borel measurable set A ⊂ R
2,

P((X, Y ) ∈ A) =

∫ ∫

A

f(x, y)dxdy.

1Walsh uses the symbol ⇈ for this.
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Moreover, by the fundamental theorem of calculus, if f is continuous, then

f(x, y) =
∂2

∂x∂y
F (x, y).

As with marginal distributions, we can also define marginal densities:

Proposition 2.2. Suppose X and Y have a joint density fXY . Then, Y has a density fY
satisfying

fY (y) =

∫ ∞

−∞

fXY (x, y)dx.

Proof. We obtain the desired result by showing that FY is absolutely continuous with inte-
grand fY :

FY (y) = P {−∞ < X < ∞, Y ≤ y} =

∫ y

−∞

∫ ∞

−∞

fXY (u, v)dudv =

∫ y

−∞

fY (v)dv.

The above shows that if X and Y have a joint density, then Y (and also X) also has a
density. The converse is not true in general:

Example 2.3. Let X ∼ U [0, 1] and Y = X (X and Y are not independent). Of course,
both of these variables have the density fX = fY = 1. If they had a joint density fXY , its
probability mass would have to be concentrated on the diagonal {(x, y) : x = y}. However,

the area of this diagonal is zero, and hence the integral
∫

1

0

∫
1

0
fXY (x, y)dxdy would also be

zero, a contradiction.

Proposition 2.4. Suppose X and Y have a continuous joint density fXY . Then, they are
independent if and only if fXY (x, y) = fX(x)fY (y) at all points x and y.

Continuity is not actually required in the above if we are willing to replace “at all” by “at
almost all” since absolutely continuous functions are differentiable almost everywhere (those
of you who have taken/are taking measure theory might have seen this).

Proof. Suppose X and Y are independent, so that FXY (x, y) = FX(x)FY (y) for all x and y.
Then, for all x and y,

fXY (x, y) =
∂2

∂x∂y
FXY (x, y) =

∂2

∂x∂y
[FX(x)FY (y)] =

(
∂

∂x
FX(x)

)(
∂

∂y
FY (y)

)

= fX(x)fY (y).

Suppose fXY (x, y) = fX(x)fY (y) for all x and y. Then, for all x and y

FXY (x, y) =

∫ y

−∞

∫ x

−∞

fXY (u, v)dudv =

∫ y

−∞

∫ x

−∞

fX(u)fY (v)dudv

=

(∫ x

−∞

fX(u)du

)(∫ y

−∞

fY (v)dv

)

= FX(x)FY (y).
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3 Covariances and correlations

So far, we know that two random variables can either be independent or not. This is not
particularly useful when we want to make statistical inferences.

For example, if X is someone’s muscle mass and Y is the average amount of protein they
eat per day, we certainly do not expect X and Y to be independent. We expect that X to
be large if Y is large. That is, we expect X and Y to be “positively correlated”.

Before we define correlation, let’s define the covariance:

Definition 3.1. Let X and Y be square integrable random variables. The covariance of X
and Y is

Cov(X, Y ) = E [(X − EX) (Y − EY )] .

Note that the covariance above is well-defined since by Cauchy-Schwarz,

|Cov(X, Y )| ≤
√

E
[
(X − EX)2

]
E
[
(Y − EY )2

]
=
√

Var(X) Var(Y ) < ∞. (1)

Note also that Cov(X,X) = Var(X). The correlation is just the normalized covariance:

Definition 3.2. Let X and Y be square integrable random variables each having nonzero
variance. The correlation of X and Y is

Cor(X, Y ) =
Cov(X, Y )

√

Var(X)
√

Var(Y )
.

Note that in the above, the correlation is undefined when either X and Y have variance
zero. However, this is not a particularly interesting case, since a random variable with
variance zero (i.e., a random variable which “does not vary”) is actually deterministic:

Proposition 3.3. Let X be a square integrable random variable with Var(X) = 0. Then,
X = EX a.s.

Proof. This follows directly from the fact that Var(X) = E[(X − E[X ])2] = 0 implies that
(X − E[X ])2 = 0 a.s.

Proposition 3.4. If X and Y are square-integrable, then

1. −1 ≤ Cor(X, Y ) ≤ 1.

2. Cov(X, Y ) = E[XY ]− E[X ]E[Y ].

3. Cor(X, Y ) = 1 ⇐⇒ Y = aX + b a.s. for some constants a > 0 and b.

4. Cor(X, Y ) = −1 ⇐⇒ Y = aX + b a.s. for some constants a < 0 and b.

5. The correlation is the covariance of the normalized random variables:

Cor(X, Y ) = Cov

(

X
√

Var(X)
,

Y
√

Var(Y )

)

.
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6. If X and Y are independent, then Cor(X, Y ) = Cov(X, Y ) = 0.

Proof.

1. By (1).

2. This follows from

Cov(X, Y ) = E [XY −XEY − Y EX + EXEY ] = E [XY ]− EXEY. (2)

3. Suppose Y = aX + b for some a > 0 and b. Then,

Cov(X, Y ) = Cov(X, aX + b) = E [X (aX + b)]− EXE [aX + b]

= aE
[
X2
]
+ bE [X ]− EX (aE [X ] + b) = a

(
E
[
X2
]
− (EX)2

)
= aVar(X).

Moreover, Var(Y ) = Var(aX + b) = a2 Var(X). Therefore,

Cor(X, Y ) =
Cov(X, Y )

√

a2Var(X)
√

Var(X)
=

aVar(X)

aVar(X)
= 1.

Now, suppose Cor(X, Y ) = 1. This means that (1) holds with equality, which only
occurs if

Y − EY = a (X − EX) a.s.

for some constant a (we proved this in an early lecture). Therefore,

Y = aX −aEX + EY
︸ ︷︷ ︸

b

a.s.

4. Similar to the above.

5. This follows by two applications of (2):

Cov

(

X
√

Var(X)
,

Y
√

Var(Y )

)

= E

[

XY
√

Var(X)
√

Var(Y )

]

−
EXEY

√

Var(X)
√

Var(Y )
.

=
E [XY ]− EXEY
√

Var(X)
√

Var(Y )
=

Cov(X, Y )
√

Var(X)
√

Var(Y )
= Cor(X, Y ).

6. By (2).

Definition 3.5. If Cov(X, Y ) = 0, we say X and Y are orthogonal.

While independence implies orthogonality, the converse is not true in general.
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