
Math 525: Lecture 22

April 05, 2018

In the last lecture, we showed that the running cost v of a Markov decision process
satisfies a so-called Bellman equation:

sup
π0∈Π0

{(I − B(π0)) v − c(π0)} = 0 (1)

where

B(π0) =








b1(π0(1))
⊺

b2(π0(2))
⊺

...
bm(π0(m))⊺








with bi(·) ≥ 0 and bi(·)
⊺e ≤ 1 and c(π0) =








c(π0(1), 1)
c(π0(2), 1)

...
c(π0(m), m)








.

In the case of a fixed discount factor 0 ≤ d < 1, we saw that B simplified to

B(π0) = d








p1(π0(1))
⊺

p2(π0(2))
⊺

...
pm(π0(m))⊺








︸ ︷︷ ︸

P (π0)

with pi(·) ≥ 0 and pi(·)
⊺e = 1.

In this lecture, we will establish uniqueness of a solution v to (1) and discuss how to
compute it. Throughout, we assume

Π0 is a finite set

(i.e., there are only finitely many actions the controller can take at each state). While this
assumption can be relaxed, we do not do so here. In this case, 1 becomes

max
π0∈Π0

{A(π0)v − c(π0)} = 0 where A(π0) = I −B(π0). (2)
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1 Matrix classes

First, we will need to recall some more linear algebra.

1.1 Monotone matrices

Definition 1.1. A monotone matrix is a real square matrix A such that Ax ≥ 0 implies
x ≥ 0 for all real vectors x.

Proposition 1.2. Monotone matrices are nonsingular.

Proof. Let A be a monotone matrix and assume there exists x with Ax = 0. Then, by
monotonicity, x ≥ 0 and −x ≥ 0, and hence x = 0.

Proposition 1.3. A real square matrix A is monotone if and only if A−1 exists and is
nonnegative.

Proof. Suppose A is monotone. Denote by x the i-th column of A−1. Then, Ax is the i-th
standard basis vector, and hence x ≥ 0 by monotonicity. For the reverse direction, suppose
A admits a nonnegative inverse. Then, if Ax ≥ 0, x = A−1Ax ≥ A−10 = 0, and hence A is
monotone.

1.2 M-matrices

Definition 1.4. An M-matrix is any square matrix A which can be written in the form

A = sI − B (3)

where s ≥ ρ(B) and B is nonnegative.

Proposition 1.5. The M-matrix (3) is nonsingular if and only if s > ρ(B).

Proof. Note that A is nonsingular if and only if s is an eigenvalue of B since

Ax = sx−Bx = 0 ⇐⇒ Bx = sx.

Therefore, if s > ρ(B), then A is nonsingular. Conversely, if s = ρ(B), by the Perron-
Frobenius theorem, s is an eigenvalue of B.

Proposition 1.6. Nonsingular M-matrices are monotone.

Proof. Divide (3) by s so that
s−1A = I − s−1B.

Noting that ρ(s−1B) < 1, the inverse of the right hand side of the above is the Neumann
series

(
I − s−1B

)−1
=

∑

k≥0

(
s−1B

)k
.

In particular, this Neumann series consists only of powers of nonnegative matrices, and
therefore converges to a nonnegative matrix. In other words, sA−1 is nonnegative, and
hence so too is A−1.
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Figure 1: Graph of (5)

1.3 Weakly chained diagonally dominant matrices

Definition 1.7. Let A = (Aij) ∈ Cm×n be a matrix. We say its i-th row is strictly diagonally
dominant (s.d.d.) if

|Aii| >
∑

i 6=j

|Aij| . (4)

We say the matrix is s.d.d. if all of its rows are s.d.d. Weakly diagonally dominant (w.d.d.)
is defined with weak inequality (≥) instead.

Example 1.8. The matrix 





1
−1 1

−1 1
−1 1







(5)

is not strictly diagonally dominant, but it is weakly diagonally dominant.

Definition 1.9. Let A = (Aij) ∈ Cm×m be a matrix. Let

J = {i : i satisfies (4)}

denote the set of all s.d.d. rows of A. We say A is weakly chained diagonally dominant
(w.c.d.d.) if

1. A is w.d.d.

2. For each row i /∈ J , there is a walk i→ j with j ∈ J .

Example 1.10. The matrix (5) is w.c.d.d. (see Figure 1).

The following first appeared in Shivakumar, P. N., and Kim Ho Chew. “A sufficient
condition for nonvanishing of determinants.” Proceedings of the American Mathematical
Society (1974).

Proposition 1.11. w.c.d.d. matrices are nonsingular.

Proof. Let A be w.c.d.d. If A is singular, we can find a nonzero vector x such that Ax = 0.
Without loss of generality, let i1 be such that |xi1 | = 1 ≥ |xj| for all j. Since A is w.c.d.d.,
we may pick a walk i1 99K i2 99K · · · 99K ik ending at an s.d.d. row ik ∈ J .

Taking moduli on both sides of

−ai1i1xi1 =
∑

j 6=i1

ai1jxj
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Figure 2: Containment of matrix classes

yields

|ai1i1 | = |ai1i1xi1 | =

∣
∣
∣
∣
∣

∑

j 6=i1

ai1jxj

∣
∣
∣
∣
∣
≤

∑

j 6=i1

|ai1j| |xj | ≤
∑

j 6=i1

|ai1j| .

Since A is w.d.d., the above must hold with equality. Therefore, |xj | = 1 whenever ai1j is
nonzero. In particular, |xi2 | = 1, and we can repeat the same argument as above to get that
row i2 is not s.d.d., row i3 is not s.d.d., etc. until we conclude that row ik is not s.d.d., a
contradiction.

Theorem 1.12. Let A be a square w.d.d. matrix with nonnegative diagonals (Aii ≥ 0) and
nonpositive off-diagonals (i.e., Aij ≤ 0 for i 6= j). Then, the following are equivalent:

1. A is a nonsingular M-matrix.

2. A is a nonsingular matrix with positive diagonals.

3. A is w.c.d.d.

Throughout the proof we use the fact that A can be written in the form A = sI − B by
taking s = maxi Aii, Bii = s−Aii, and Bij = −Aij for j 6= i. Since A is w.d.d., this implies

s− Bii = Aii ≥
∑

j 6=i

|Aij | =
∑

j 6=i

Bij

and hence

ρ(B) ≤ ‖B‖∞ = max
i

{

Bii +
∑

j 6=i

Bij

}

≤ max
i
{Bii + s− Bii} = s.

In other words, A is a (possibly singular) M-matrix.

Proof of (1) =⇒ (2). It is sufficient to prove that if A is nonsingular, then A has positive
diagonals. We prove the contrapositive. Suppose Aii = 0 for some i. Then, |Aij| = Bij = 0
for all j. That is, the i-th row of A is zero, and hence A is singular.
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Proof of (2) =⇒ (3). This proof is nontrivial, and hence I refer you to (self-plug) Az-
imzadeh, P. “A fast and stable test to check if a weakly diagonally dominant matrix is a
nonsingular M-matrix.” Mathematics of Computation (2018).

Proof of (3) =⇒ (1). If A is w.c.d.d., it is nonsingular (Proposition 1.11).

Corollary 1.13. A square s.d.d. matrix with nonnegative diagonals and nonpositive off-
diagonals is a nonsingular M-matrix.

Proof. An s.d.d. matrix is a w.c.d.d. matrix.

2 Bellman equation

We start with a trivial observation.

Lemma 2.1. A(π0) is a square w.d.d. matrix with nonnegative diagonals and nonpositive
off-diagonals.

Proof. This is a result of the following observations:

• (B(π0))ii ≤ 1 so that (A(π0))ii = 1− (B(π0))ii ≥ 0,

• (B(π0))ij ≥ 0 so that (A(π0))ij = −(B(π0))ij ≤ 0 whenever i 6= j, and

•
∑

j(B(π0))ij ≤ 1 so that
∑

j(A(π0))ij = 1−
∑

j(B(π0))ij ≥ 0.

The above implies that we can quickly check to see if A(π0) is a nonsingular M-matrix
(and hence monotone) by verifying if it is w.c.d.d. In the constant discount factor case,
A(π0) is trivially w.c.d.d.:

Example 2.2. Suppose A(π0) = I − dP (π0) for some 0 ≤ d < 1. Then,
∑

j

(A(π0))ij = 1− d
∑

j

(P (π0))ij = 1− d > 0.

In other words, A(π0) is s.d.d. since (A(π0))ii >
∑

j 6=i |(A(π0))ij|.

2.1 Uniqueness

Theorem 2.3. Suppose A(π0) is w.c.d.d. for each π0. Then, solutions of (2) are unique.

Proof. Let v and v′ satisfy equation (2). Pick πv
0 such that

0 = max
π0∈Π0

{A(π0)v − c(π0)} = A(πv
0)v − c(πv

0).

Then,
0 = max

π0∈Π0

{A(π0)w − c(π0)} ≥ A(πv
0)w − c(πv

0).

Putting these two together,
A(πv

0) (v − w) ≥ 0.

Since A(πv
0) is monotone, its inverse exists and is nonnegative. Therefore, we can multiply

both sides of the above inequality by (A(πv
0))

−1 to get v − w ≥ 0. Switching the roles of v
and w in this argument, we get w − v ≥ 0.
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Figure 3: Robot navigation

2.2 Policy iteration

One way to compute the solution v is by the so-called policy iteration algorithm:

1. Pick an “initial guess” π
(0)
0 ∈ Π0. Set v(0) = (−∞, . . . ,−∞) and k ← 1.

2. Solve the linear system A(π
(k−1)
0 )v(k) = b(π

(k−1)
0 ) for v(k) ∈ Rm.

3. Pick π
(k)
0 ∈ Π0 such that A(π

(k)
0 )v(k) − b(π

(k)
0 ) = maxπ0∈Π0

{A(π0)v
(k) − b(π0)}.

4. If v(k) = v(k−1), stop. Otherwise, set k ← k + 1 and go to step 2.

Theorem 2.4. Suppose A(π0) is w.c.d.d. for each π0. Then, the above policy iteration
algorithm converges to the solution v of (2) in at most |Π0| iterations (i.e., v = v(|Π0|) =
v(|Π0|+1) = · · · ).

Proof. A nice reference for this fact is Bokanowski, Olivier, Stefania Maroso, and Hasnaa
Zidani. “Some convergence results for Howard’s algorithm.” SIAM Journal on Numerical
Analysis 47.4 (2009): 3001-3026.

2.3 Example

• This example is by Massimiliano Patacchiola (https://mpatacchiola.github.io/).

• A robot, started in position (1, 1), has to find the best way to reach the charging station
(Reward +1) and to avoid falling down the flight of stairs (Reward -1).

• This is a Markov chain with state space S = {(1, 1), (1, 2), . . . , (4, 3), ∅} (∅ is an extra
state which both (4, 3) and (4, 2) transition to deterministically to signify the end of
the game).

• At each state i, the robot gets to choose which direction to face: Ai = {N, S,W,E}.
Then, the robot tries to move forward. However, being faulty, 10% of the time it moves
to its left and 10% of the time it moves to its right. This determines the transition
matrix P (π0).
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Figure 4: Result of running policy iteration

• The reward function is r(i) = I{(4,3)}(i)− I{(4,2)}(i).

• We take a discount factor of d = 0.999 < 1 so that A(π0) = I − dP (π0).

• The Markov decision process is

max
π∈Π

E

[
∑

n≥0

0.999nr(Xπ
n)

]

︸ ︷︷ ︸

maximize rewards r

= −min
π∈Π

E

[
∑

n≥0

0.999n(−r(Xπ
n ))

]

︸ ︷︷ ︸
minimize costs c=−r

7


