
Math 525: Lecture 21

April 03, 2018

So far, we have worked primarily with (stationary) Markov chains whose transition ma-
trices are “constant”. In this lecture, we explore the following question: what if we could
“control” the transition matrix? In this context, we will have a transition matrix P (π) that
depends on some quantity π which we, the “controller”, get to choose.

1 Markov decision processes

For this lecture, our setting is as follows:

• S = {1, . . . , m} is a finite state space.

• To each state i in S is associated a nonempty countable set Ai which we can intuitively
think of as all the “actions” available at state i.

Definition 1.1. A stationary policy π0 is a function whose domain is S and which satisfies
π0(i) ∈ Ai for all i. The set of all stationary policies is denoted Π0

Definition 1.2. A randomized policy (πn)n≥0 is a sequence in which each πn(i) is a random
variable satisfying

• πn(i) takes values in Ai a.s. and

• {πn(i) = a} ∈ Fn for each a in Ai.

The set of all randomized policies is denoted Π.

For each state i in S and action a in Ai, let pi(a) denote a nonnegative column vector
satisfying pi(a)

⊺e = 1. Given a randomized policy π, let (Xπ
n)n≥0 denote a Markov chain

satisfying
P(Xπ

n+1 = j | Xπ
n = i) = pi(πn(i))

⊺ej.

That is, the transition matrix at time n is

P (πn) =

p1(πn(1))
⊺

p2(πn(2))
⊺

...
pm(πn(m))⊺

.

1

Now, let c : S → R, 0 ≤ d < 1, and

J(i, π) = E

[

∑

n≥0

dnc(Xπ
n)

∣

∣

∣

∣

∣

Xπ
0 = i

]

. (1)

We can think of

• c(Xπ
n) as the cost incurred at time n and

• dn as a discount factor which attempts to capture the fact that costs incurred in the
“future” are not as bad as costs incurred “today”.

Our objective is to pick π so as to minimize J(i, π). That is, we are interested in the quantity

v(i) = inf
π∈Π

J(i, π) (2)

We call (2) a Markov decision process (MDP).

Proposition 1.3. v(i) is bounded for each i.

Proof. This is a trivial consequence of the discount factor being strictly less than one:

|v(i)| ≤
∑

n≥0

dn max
j

|c(j)| =
1

1− d
max

j
|c(j)| .

Remark 1.4. We glossed over defining Fn earlier, so we return to that now. Given a particular
randomized policy π, we define

Fn = σ(Xπ
0 , . . . , X

π
n).

This definition seems, at first glance, circular... it seems as though πn depends on Fn and
vice versa. However, if we look a bit closer at the definition of Xπ

n , we note that it only
depends on the π0, . . . , πn−1. In light of this, we can write Xπ

n ≡ Xπ0,...,πn−1

n . Therefore,

Fn = σ(X0, X
π0

1 , X
π0,π1

2 , . . . , Xπ0,π1,...,πn−1

n)

and hence π is well-defined.

2 Dynamic programming

By the Markov property,

J(i, π) = E
i

[

c(Xπ
0) +

∑

n≥1

dnc(Xπ
n)

]

= c(i) + dEi

[

∑

n≥0

dnc(Xπ
n+1)

]

= c(i) + dEi [J(Xπ
1 , (πn)n≥1)] ≥ c(i) + d

∑

j

(P (π0))ijv(j)

2

where π0 is some stationary policy. Taking infimums of both sides of this equality,

v(i) ≥ inf
π0∈Π0

{

c(i) + d
∑

j

(P (π0))ijv(j)

}

. (3)

Now, fix ǫ > 0. For each i, let πi = (πi
n)n≥0 be a randomized policy which satisifes

v(i) ≥ J(i, πi)− ǫ.

Let π0 be an arbitrary stationary policy. Define a new randomized policy πǫ = (πǫ
n)n≥0 by

πǫ
n =

{

π0 if n = 0
∑

i 1{X
π0

1
=i}π

i
n−1 if n > 0.

Note that

v(i) ≤ J(i, πǫ) = c(i) + d
∑

j

(P (π0))ijJ(j, π
j) ≤ c(i) + d

∑

j

(P (π0))ijv(j) + ǫ.

Now, take infimums of both sides to get

v(i) ≤ inf
π0∈Π0

{

c(i) + d
∑

j

(P (π0))ijv(j)

}

+ ǫ. (4)

We can take ǫ ↓ 0 and combine (3) and (4) to arrive at

v(i) = inf
π0∈Π0

{

c(i) + d
∑

j

(P (π0))ijv(j)

}

. (5)

The implications of this are amazing! We started out with an objective function (1) that was
daunting: minimizing it would require picking a stationary policy for each time n. However,
we were able to use the Markov property to reduce this to a “local” problem that only involves
minimizing over all stationary policies π0. In fact, we can simplify (5) even further. First,
we need some notation:

for {yα}α ∈ R
n, inf

α
yα is the vector with entries inf

α
(yα)i.

Theorem 2.1 (Dynamic programming). Let v = (v(1), . . . , v(m))⊺ and c = (c(1), . . . , c(m))⊺

where v(i) is the quantity defined by (2). Then,

sup
π0∈Π0

{(I − dP (π0)) v − c} = 0

Proof. We can rewrite (5) as
v = inf

π0∈Π
{c+ dP (π0)v} . (6)

Moving some terms around, we obtain the desired result.

3

In fact, the situation is much more general than we have let on. We can allow for more
general discount factors and costs:

J(i, π) = E

[

∑

n≥0

d(πn(X
π
n), X

π
n)

nc(πn(X
π
n), X

π
n)

∣

∣

∣

∣

∣

Xπ
0 = i

]

.

However, in this case, it is no longer necessarily the case that v(·) is bounded. When it is,
the corresponding dynamic programming equation is

sup
π0∈Π0

{(I −D(π0)P (π0)) v − c(π0)} = 0 (7)

where c(π0) = (c(π0(1), 1), . . . , c(π0(m), m))⊺ and

D(π0) = diag(d(π0(1), 1), . . . , d(π0(m), m)) =

d(π0(1), 1)
d(π0(2), 2)

. . .

d(π0(m), m)

.

In light of this, the remainder of this lecture is focused on (7). In particular, we would
like to know if an arbitrary vector v satisfies (7), is it necessarily equal to the MDP (2)?
Moreover, can we use (7) to compute the MDP?

4

