Math 525: Lecture 21

April 03, 2018

So far, we have worked primarily with (stationary) Markov chains whose transition ma-
trices are “constant”. In this lecture, we explore the following question: what if we could
“control” the transition matrix? In this context, we will have a transition matrix P(7) that
depends on some quantity 7 which we, the “controller”; get to choose.

1 Markov decision processes

For this lecture, our setting is as follows:
e S={1,...,m} is a finite state space.

e To each state ¢ in .S is associated a nonempty countable set A; which we can intuitively
think of as all the “actions” available at state i.

Definition 1.1. A stationary policy mg is a function whose domain is S and which satisfies
mo(7) € A, for all i. The set of all stationary policies is denoted Il

Definition 1.2. A randomized policy (m,)n>0 is a sequence in which each m, () is a random
variable satisfying

e 7,(i) takes values in A; a.s. and
o {m,(i) =a} € F, for each a in A;.
The set of all randomized policies is denoted II.

For each state ¢ in S and action a in A;, let p;(a) denote a nonnegative column vector
satisfying p;(a)Te = 1. Given a randomized policy 7, let (X]),>o denote a Markov chain
satisfying

PX0 =0 | X7 = 1) = pi(ma(9)Te;.

That is, the transition matrix at time n is



Now, let ¢: S >R, 0<d< 1, and

J(i,m)

E Y de(X])

n>0

)| XT = z] . (1)

We can think of
e ¢(XT) as the cost incurred at time n and

e " as a discount factor which attempts to capture the fact that costs incurred in the
“future” are not as bad as costs incurred “today”.

Our objective is to pick 7 so as to minimize J (i, 7). That is, we are interested in the quantity

v(i) = inf J(7,m) (2)

mell

We call (2) a Markov decision process (MDP).
Proposition 1.3. v(i) is bounded for each i.

Proof. This is a trivial consequence of the discount factor being strictly less than one:

1
< d"ma | = —— ma ) O
(1 3 mx ()] = = ()

Remark 1.4. We glossed over defining F,, earlier, so we return to that now. Given a particular
randomized policy 7, we define

Fon=0(XJ,...,X]).

n

This definition seems, at first glance, circular... it seems as though 7, depends on F,, and
vice versa. However, if we look a bit closer at the definition of X7, we note that it only

n

depends on the 7, ..., m,—1. In light of this, we can write X7 = X0~ ~1_ Therefore,
Fn = 0(Xo, X0, X0 ..., X]OMrTn-1)

and hence 7 is well-defined.

2 Dynamic programming

By the Markov property,

J(i,m)=E

+) d“c(X;;)] = (i) + dE’

n>1

Z dnC(X;er)]

n>0

=€)+ 2B X () z0)] 2 ) -4 (P



where 7, is some stationary policy. Taking infimums of both sides of this equality,

mo€lly

o) 2 inf {c@') + d2<P<wO>>ijv<j>} . (3

Now, fix € > 0. For each i, let 7" = (7% ),,>¢ be a randomized policy which satisifes
v(i) > J(i, ) — e
Let m be an arbitrary stationary policy. Define a new randomized policy 7€ = (75),>0 by
¢ o ifn=20
Ty = , .

Note that

Now, take infimums of both sides to get

mo€llp

v(i) < inf {C(i) + dZ(P(Wo))ijv(j)} +e (4)

We can take € | 0 and combine (3) and (4) to arrive at

o(i) = inf {a(z‘) - dZ_<P<7ro>>ijv<j>} . )
j

The implications of this are amazing! We started out with an objective function (1) that was

daunting: minimizing it would require picking a stationary policy for each time n. However,

we were able to use the Markov property to reduce this to a “local” problem that only involves

minimizing over all stationary policies my. In fact, we can simplify (5) even further. First,

we need some notation:

for {ya}o € R", infy, is the vector with entries inf(y,);.

Theorem 2.1 (Dynamic programming). Let v = (v(1),...,v(m))T and c = (c¢(1),...,c(m))T
where v(i) is the quantity defined by (2). Then,

sup {({ —dP(m))v—c} =0

mo€llp
Proof. We can rewrite (5) as
v = inf {c+ dP(m)v}. (6)
mo€ll
Moving some terms around, we obtain the desired result. O

3



In fact, the situation is much more general than we have let on. We can allow for more
general discount factors and costs:

J@i,m) =B | > d(m(X]), XJ)"e(m(X]), X7)

n>0

Xg:z-].

However, in this case, it is no longer necessarily the case that v(-) is bounded. When it is,
the corresponding dynamic programming equation is

sup {(I — D(mo)P(m)) v — e(mo)} = 0 (7)

mo€llp

where ¢(mg) = (¢(mo(1),1), ..., c(me(m), m))T and

D(mp) = diag(d(mo(1),1),...,d(me(m),m)) =
d(mo(m), m)

In light of this, the remainder of this lecture is focused on (7). In particular, we would
like to know if an arbitrary vector v satisfies (7), is it necessarily equal to the MDP (2)?
Moreover, can we use (7) to compute the MDP?



