
Math 525: Lecture 16

March 8, 2018

1 Markov chains

Consider a sequence (Xn)n≥0 of random variables (defined on the same probability space)
each taking values in some countable set. If we reinterpret the index n as “time”, we can
think of the random variable Xn “occurring” before Xn+1. Similarly, we may interpret the
finite sequence (Xn)n∈{0,...,N} as indexed by time. Let’s give this concept a name:

Definition 1.1. A discrete stochastic process is a sequence (Xn)n∈T such that

1. each Xn takes values in some countable set (i.e., there exists a countable set S such
that Xn(ω) ∈ S for all n and ω) and

2. the index set is either T = {0, 1, . . .} or T = {0, . . . , N}.

We call the set S the state space.

In practice, many discrete time stochastic processes satisfy a sort of “memoryless” prop-
erty:

P(Xn+1 = j | X0 = i0, . . . , Xn−1 = in−1, Xn = i) = P(Xn+1 = j | Xn = i) (1)

for all 0 ≤ n < supT and i0, . . . , in−1, i, j ∈ S.

That is, if we know the value of X at the “current” time n, knowing the value of X at
“previous” times 0, . . . , n−1 provides no further insight as to the value of X at “future” time
n+ 1. In other words, only the present value of the process is important, not its history.

Definition 1.2. (1) is called the Markov property. A discrete stochastic process which
satisfies the Markov property is called a Markov chain.

Technically, (1) is not properly stated since the event {X0 = i0, . . . , Xn−1 = in−1, Xn = i}
can have probability zero. Therefore, when we say that the Markov property holds, it is
understood that we are ignoring (1) when the event {X0 = i0, . . . , Xn−1 = in−1, Xn = i}
has probability zero.
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Example 1.3. Let (Yn)n≥0 be sequence of independent Bernoulli (coin flip) random vari-
ables. Let Xn = Y1 + · · ·+ Yn. Since

Xn+1 = Xn + Yn+1,

it is obvious that (Xn)n≥0 is a Markov process. In particular,

P(Xn+1 = j | Xn = i) =







P(Yn+1 = 1) if j = i+ 1

P(Yn+1 = 0) if j = i

0 otherwise.

Proposition 1.4. If (Xn)n∈T is a Markov chain, then

P(Xn+1 = j | (X0, . . . , Xn−1) ∈ A, Xn = i) = P(Xn+1 = j | Xn = i)

for all 0 ≤ n < supT , i, j ∈ S, and A ⊂ R
n+1.

Proof. First, note that

P(Xn+1 = j | (X0, . . . , Xn−1) ∈ A, Xn = i) =
P(Xn+1 = j, (X0, . . . , Xn−1) ∈ A, Xn = i)

P((X0, . . . , Xn) ∈ A, Xn = i)
.

Next,

P(Xn+1 = j, (X0, . . . , Xn−1) ∈ A, Xn = i)

=
∑

a∈A
P(Xn+1 = j, (X0, . . . , Xn−1) = a, Xn = i)

=
∑

a∈A
P(Xn+1 = j | (X0, . . . , Xn−1) = a, Xn = i)P((X0, . . . , Xn−1) = a, Xn = i)

= P(Xn+1 = j | Xn = i)
∑

a∈A
P((X0, . . . , Xn−1) = a, Xn = i)

= P(Xn+1 = j | Xn = i)P((X0, . . . , Xn) ∈ A, Xn = i).

The desired result follows by combining these equalities.

So far, we have seen that the future value Xn+1 of a Markov chain may depend on the
present value Xn and the time n. This was indeed the case in Example 1.3. However, what
if in Example 1.3, we made the variables Yn independent? Then, the Markov chain would
not depend on the time n. This is a very common scenario, so we give it a name.

Definition 1.5. A Markov chain X is stationary if

P(Xn+1 = j | Xn = i) = P(X1 = j | X0 = i)

for all states i, j and 0 ≤ n < supT . If the state space is finite, we can create a matrix of
transition probabilities P = (Pij) with

Pij = P(Xn+1 = j | Xn = i)

that wholly describes the evolution of the Markov chain.
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Remark 1.6. Actually, we can create the matrix P even if the state space S is countable. In
this case, we have what is called a denumerable matrix in RN×N. When we say “transition
matrix”, we will assume that the state space is finite unless otherwise specified.

Example 1.7. Recall the game of gambler’s ruin: a gambler repeatedly plays a game against
an opponent in which they receive a dollar with probability p and lose a dollar with proba-
bility 1− p. Both the gambler and opponent start off with initial stakes of x and y dollars,
respectively. The game ends when either the gambler or the opponent are broke.

Let Xn be the amount of money the gambler has at time n. Let N = x + y be total
wealth in play. It is easy to see that (Xn)n is a stationary Markov chain, whose transition
probabilities are given by the tridiagonal (N + 1)× (N + 1) matrix

P =














1 0
1− p 0 p

1− p 0 p
. . .

. . .
. . .

1− p 0 p
1− p 0 p

0 1














.

Pictorially,

0 1 · · · i−1 i i+1 · · · N−1 N

1− p 1− p 1− p 1− p 1− p 1− p 1− p

p p p p p p p

Any Markov chain can always be transformed into a stationary Markov chain by “un-
rolling” the state space:

Proposition 1.8. Let (Xn)n∈T be a Markov chain that is not necessarily stationary. Define
a new discrete stochastic process (Yn)n∈T by

Yn = (X0, . . . , Xn).

Then, (Yn)n is a stationary Markov chain (if the state space of the original Markov chain
was S, the state space of the new Markov chain is ∪nS

n).

Let’s recall some definitions and results from linear algebra.

Definition 1.9. Let A ∈ Cm×m. We call λ ∈ C an eigenvalue of A if there exists a nonzero
vector x ∈ Cn such that

Ax = λx.

In this case, x is an eigenvector associated to the eigenvalue λ. The spectrum σ(A) of A is
the set of all the eigenvalues of A. The spectral radius ρ(A) of A is defined as

ρ(A) = max
λ∈σ(A)

|λ| .

We say A is nonsingular/invertible if 0 /∈ σ(A).
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Definition 1.10. A norm is a function ‖ ·‖ : Cm → R satisfying, for all c ∈ C and x, y ∈ C
m

1. ‖cx‖ = |c| ‖x‖,

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

3. ‖x‖ ≥ 0,

4. ‖x‖ = 0 if and only if x = 0.

There is some redundancy in the above definition: points (1) and (2) imply point (3).

Proposition 1.11. Let ‖ · ‖ be a norm on Cm, A ∈ Cm×m, and define the operator norm of
A by

‖A‖ = sup
‖x‖=1

‖Ax‖ .

Then,

ρ(A) ≤
∥
∥Ak

∥
∥
1/k

Proof. Let (λ, x) be an eigenvalue-eigenvector pair. Then,

|λ|k ‖x‖ =
∥
∥λkx

∥
∥ =

∥
∥Akx

∥
∥ ≤

∥
∥Ak

∥
∥ ‖x‖

and hence |λ|k ≤ ‖A‖k, from which the desired result follows.

Example 1.12. The infinity norm of a vector is

‖x‖∞ = max
i

|xi| .

First, note that for ‖x‖∞ = 1,

‖Ax‖∞ = max
i

∣
∣
∣
∣
∣

∑

j

Aijxi

∣
∣
∣
∣
∣
≤ max

i

∑

j

|Aij | |xi| ≤ max
i

∑

j

|Aij | .

Now, let i∗ be such that

max
i

∑

j

|Aij | =
∑

j

|Ai∗j |

let y be the vector with entries

yj =

{

+1 if Ai∗j ≥ 0

−1 otherwise.

Note that ‖y‖ = 1 and

‖Ay‖∞ =
∑

j

|Ai∗j| .

Since
‖Ay‖∞ ≤ ‖A‖∞ ≤ ‖Ay‖∞ ,
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it follows that
‖A‖∞ = max

i

∑

j

|Aij | .

By Proposition 1.11 and the above,

ρ(A) ≤ ‖A‖∞ = max
i

∑

j

|Aij | . (2)

Proposition 1.13. Let P = (Pij) be a transition matrix associated to a stationary Markov
chain. Then,

1. Pij ≥ 0 for all i, j and

2.
∑

j Pij = 1 for all i.

3. λ = 1 is an eigenvalue of P .

4. I − P is singular.

5. ρ(P ) ≤ 1.

Proof. The first two points are trivial consequences of the transition matrix being defined
by

Pij = P(X1 = j | X0 = i).

As for the third and fourth points, note that

Pe = e and hence (I − P ) e = 0.

where e = (1, . . . , 1) is the vector of ones. The last point is a consequence of (2).

Definition 1.14. Let µi = P(X0 = i). µ is called the initial distribution of the Markov
chain (Xn)n∈T .

Note that the initial distribution is just a vector. If we know the initial distribution of a
stationary Markov chain and its transition matrix, we can determine the distribution Xn at
any future time n > 0.

Proposition 1.15. Let (Xn)n∈T be a stationary Markov chain with transition matrix P =
(Pij) and initial distribution µi. Then,

P(Xn = j) is the j-th entry of the vector µP n.

where it is understood that P 0 = I.

Proof. Let µ
(n)
i = P(Xn = i) so that µ = µ(0). Then,

µ
(n+1)
j = P(Xn+1 = j) =

∑

i

P(Xn+1 = j | Xn = i)P(Xn = i)

=
∑

i

P(X1 = j | X0 = i)P(Xn = i)

=
∑

i

Pijµ
(n)
i =

∑

i

µ
(n)
i Pij
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and hence
µ(n+1) = µ(n)P.

The desired result now follows by induction.

2 Examples of Markov chains

Example 2.1 (Gambler’s ruin). Consider the gambler’s ruin with N = 4 and p = 1/2. The
transition matrix is

P =









1 0
1/2 0 1/2

1/2 0 1/2
1/2 0 1/2

0 1









.

Let µ be the initial distribution of the gambler’s wealth. For example, if the gambler’s initial
wealth is 2, we can represent this with the initial distribution vector

µ =









0
0
1
0
0









(3)

Then,
µ(n) = µ⊺P n

is the distribution of the gambler’s wealth after n plays. We can diagonalize the matrix P
by

P = SJS−1

where

J =









0
1

1
− 1√

2

− 1√
2









S =









0 −3 4 0 0
−1 −2 3 1 1

0 −1 2 −
√
2

√
2

1 0 1 1 1
0 1 0 0 0









.

Since
P n =

(
SJS−1

)n
=

(
SJS−1

)
· · ·

(
SJS−1

)

︸ ︷︷ ︸
n times

= SJnS−1,

it follows that

lim
n→∞

P n = S
(

lim
n→∞

Jn
)

S−1 = S









0
1

1
0

0









S−1 =









1 0 0 0 0
3/4 0 0 0 1/4
1/2 0 0 0 1/2
1/4 0 0 0 3/4
0 0 0 0 1









.

6



Therefore,
µ(∞) ≡ lim

n→∞
(µ⊺P n) = µ⊺ lim

n→∞
P n.

If we plug in 3, we get

µ(∞) =









1/2
0
0
0
1/2









.

Unsurprisingly, the probability of ruin is the same as that of victory.

Example 2.2 (Symmetric random walk). Consider once again the gambler’s ruin. Suppose
now that instead of the game ending when one player accumulates all the wealth, the game
never ends, with players allowed to be in debt. This is a stationary Markov chain with the
denumerable transition matrix

P =










. . .
...

...
...

...
...

· · · 1/2 0 1/2 0 0 · · ·
· · · 0 1/2 0 1/2 0 · · ·
· · · 0 0 1/2 0 1/2 · · ·

...
...

...
...

...
. . .










.

Example 2.3 (Success runs). Consider an experiment with probability p of success and
1− p of failure. Let

Y−1 = F

and

Yn =

{

S if the n-th experiment was a success

F otherwise

for n ≥ 0. Then, the variable

Xn = n−max{k ≤ n : Yk = F}
counts the consecutive number of successes leading up to time n. For example, if

SFSSSF · · ·
is a sequence of trials, then X0 = 1, X1 = 0, X2 = 1, X3 = 2, X4 = 3, X5 = 0, etc.

This is a stationary Markov chain with

P(X1 = j | X0 = i) =







p if j = i+ 1

1− p if j = 0

0 otherwise.

Therefore, this Markov chain admits the denumerable transition matrix

P =








1− p p 0 0 · · ·
1− p 0 p 0 · · ·
1− p 0 0 p · · ·

...
...

...
...

. . .








.
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