
Math 525: Lecture 15

March 6, 2018

Today, we finally prove the central limit theorem (CLT). Recall that for a “sufficiently
nice” sequence of i.i.d. random variables (Xn)n, the law of large numbers told us

Sn

n
≡ X1 + · · ·+Xn

n
→ EX1 a.s.

The CLT will tell us about the distribution of Sn/n. Namely,

√
n

(

Sn

n
− EX1

)

D−→ Y (1)

where Y ∼ N (0,Var(X1)). Before we give the CLT, let’s review normal random variables.

1 Normal random variables

Definition 1.1. We say X is a normal random variable with mean µ and variance σ2 if its
probability density is

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

In this case, we write X ∼ N (µ, σ2).

Proposition 1.2. The characteristic function of X ∼ N (0, 1) random variable is

φX(t) = e−t2/2.

Proof. Note that

φX(t) = E
[

eitX
]

=
1√
2π

∫ ∞

−∞
e−

x
2

2 eitxdx

=
1√
2π

(
∫

0

−∞
e−

x
2

2 eitxdx+

∫ ∞

0

e−
x
2

2 eitxdx

)

=
1√
2π

(
∫ ∞

0

e−
x
2

2 e−itxdx+

∫ ∞

0

e−
x
2

2 eitxdx

)

=
2√
2π

∫ ∞

0

e−
x
2

2 cos(tx)dx.
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Now, take the derivative with respect to t to get

φ′
X(t) = − 2√

2π

∫ ∞

0

e−
x
2

2 x sin(tx)dx.

Integrate by parts to get

φ′
X(t) =

2√
2π

(

e−
x
2

2 sin(tx) |∞
0

−t

∫ ∞

0

e−
x
2

2 cos(tx)dx

)

= − 2t√
2π

∫ ∞

0

e−
x
2

2 cos(tx)dx

= −tφX(t).

Note that
φ′(t) = −tφ(t)

is an ordinary differential equation with

φ(t) = C0 exp

(

−t2

2

)

where C0 is some constant. Since φ is a characteristic function, we must have φ(0) = 1. This
implies that C0 = 1.

2 Classical CLT

Just like with the law of large numbers, there are various versions of the CLT. Here is the
first version we encounter:

Proposition 2.1. Let (Xj)j be a sequence of i.i.d. random variables. Let µ = E[X1],
σ2 = Var(X1), and Sn = X1 + · · ·+Xn. Then,

√
n

σ

(

Sn

n
− µ

)

D−→ N (0, 1)

(note that this is identical to (1) if we multiply both sides by σ).

In establishing Levy’s continuity theorem, we have actually done all the hard work already
to prove this fact.

Proof. First, note that

√
n

σ

(

Sn

n
− µ

)

=
(X1 − µ) + · · ·+ (Xn − µ)√

nσ
=

Y1 + · · ·+ Yn√
n

.

where

Yn =
Xn − µ

σ
.
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Note that

EYn =
EXn − µ

σ
= 0

Var(Yn) = Var

(

Xn − µ

σ

)

= 1.

For brevity, let S ′
n = Y1 + · · ·+ Yn.

The characteristic function of Yn is

φ(t) = E[eitYn ]

= E

[

∑

k≥0

(it)k

k!
Y k
n

]

= E
[

Y 0
]

+ (it)E
[

Y 1
]

+
(it)2

2
E
[

Y 2
]

+ · · ·

= 1− t2

2
+ · · ·

More precisely,

φ(t) = 1− t2

2
+ h(t2)

where h denotes a function that satisfying h(cx)/x → 0 as x → 0 (corresponding to the
higher order terms in the Taylor expansion). Now, let

S ′
n =

Y1 + · · ·+ Yn√
n

.

Note that

φS′

n
(t) = E

[

exp

(

it
Y1 + · · ·+ Yn√

n

)]

= E

[

exp

(

it
Y1√
n

)

· · · exp
(

it
Yn√
n

)]

= E

[

exp

(

it
Y1√
n

)]

· · ·E
[

exp

(

it
Yn√
n

)]

= φ

(

t√
n

)

· · ·φ
(

t√
n

)

=

(

φ

(

t√
n

))n

=

(

1− t2

2n
+ o

(

t2

n

))n

.

=
(

1 +
zn
n

)n

where we have defined

zn = −t2

2
+ nh

(

t2

n

)

.
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Let c = t2 and x = 1/n. Then,

nh

(

t2

n

)

=
h (cx)

x
→ 0 as x → 0.

Therefore,
φS′

n
(t) → et

2/2.

By Lévy’s continuity theorem, S ′
n converges to a standard normal random variable.

Exercise 2.2. n numbers are rounded to the nearest integer and then summed. Suppose
that the individual roundoff errors are uniformly distributed over [−0.5, 0.5]. What is the
probability that the roundoff error exceeds the exact sum by more than x?

Hint: let Yj be the j-th number and [Yj] be the result from rounding. Then,

Xj = Yj − [Yj] ∼ U [−0.5, 0.5].

Therefore,

EXj = 0 and σ2 = Var(Xj) = EX2

j =

∫

1/2

−1/2

x2dx =
1

12
.

Let Sn = X1 + · · ·+Xn. Then,

P {|Sn| > x} = 1− P {|Sn| ≤ x}

= 1− P

{ |Sn|√
nσ

≤ x√
nσ

}

= 1− P

{

− x√
nσ

≤ Sn√
nσ

≤ x√
nσ

}

= 1−
(

P

{

Sn√
nσ

≤ x√
nσ

}

− P

{

Sn√
nσ

< − x√
nσ

})

= 1−
(

P

{

Sn√
nσ

≤ x√
nσ

}

−
(

1− P

{

Sn√
nσ

≥ − x√
nσ

}))

≈ 1−
(

P

{

Sn√
nσ

≤ x√
nσ

}

−
(

1− P

{

Sn√
nσ

≤ x√
nσ

}))

= 2

(

1− P

{

Sn√
nσ

≤ x√
nσ

}

.

)

Since we expect Sn√
nσ

to be normally distributed, letting F denote the distribution function

of N (0, 1),

P {|Sn| > x} ≈ 2

(

1− F

(

x√
nσ

))

.

For example, if n = 10 and x = 1, then

P {|S10| > 1} ≈ 2

(

1− F

(√
12√
10

))

≈ 0.27.
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3 Confidence intervals

The discussion in this section is very hand wavy, so take it with a grain of salt.
Consider conducting a sequence of trials represented as i.i.d. random variables (Xj)j .

For example, we may repeatedly toss an unfair coin repeatedly in order to determine its
distribution. In practice, we will not have access to the variance of X1.

Letting Sn = X1 + · · ·+Xn, and consider the random variable

Zn =

√
n

σ

(

Sn

n
− µ

)

.

Then,

P(−z ≤ Zn ≤ z) = P

(

µ− z
σ√
n
≤ Sn

n
≤ µ+ z

σ√
n

)

.

Now, fix α ∈ [0, 1]. Pick z such that

P(−z ≤ Zn ≤ z) = 1− α.

Since Zn
D−→ N (0, 1),

P(−z ≤ Zn ≤ z) = P(Zn ≤ z)− P(Zn < −z)

= P(Zn ≤ z)− (1− P(Zn ≥ −z))

≈ P(Zn ≤ z)− (1− P(Zn ≤ z))

= 2P(Zn ≤ z)− 1

where we have used the approximation

P(Zn ≥ −z) ≈ P(Zn ≤ z)

which is a consequence of Zn being nearly normal. Therefore,

P(Zn ≤ z) ≈ 1− α

2

and hence
z ≈ F−1

(

1− α

2

)

.

This tells us that our sample mean Sn/n is “very likely” to be within

±F−1

(

1− α

2

) σ√
n

of the actual mean. However, this estimate is not so useful since we may not have access to
σ. So instead, we make another approximation, substituting the sample variance:

F−1

(

1− α

2

) σn√
n

where

σn =
1

n

n
∑

j=1

(

Xj −
Sn

n

)2

.
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Example 3.1. We toss a coin 100 times. The result of the j-th toss is Xj. Suppose we
observe 53 heads so that

Sn(ω)

n
= 0.53 and σ2

n ≈ 0.25

where we have written Sn(ω) above to stress that 0.53 is an observation. Let α = 0.05,
corresponding to a confidence interval of 1− α = 0.95. Then,

F−1

(

1− α

2

)

= F−1 (0.975) = 1.96.

Moreover,

1.96 · σn√
n
≈ 0.1

The confidence interval is

[0.53− 0.1, 0.53 + 0.1] = [0.43, 0.63] .

4 Lyapunov’s CLT

The problem with the classical CLT is that it requires the variables to be identically dis-
tributed. Lyapunov’s CLT relaxes this assumption:

Proposition 4.1. Let (Xj)j be a sequence independent, mean zero random variables such
that X3

j is integrable. Let σ2

j = Var(Xj), γ̂j = E[X3

j ], and γj = E[|Xj |3]. Let Sn = X1+ · · ·+
Xn and sn = σ2

1
+ · · ·+ σ2

n. Suppose that

γ1 + · · ·+ γn
s3n

→ 0 as n → ∞.

Then,
Sn

sn

D−→ N (0, 1) as n → ∞.

6


