
Math 525: Lecture 14

February 22, 2018

1 Tightness

Last lecture, we discussed convergence in distribution, culminating in Helly’s theorem:

Proposition 1.1 (Helly’s theorem). Let (Fn)n be a sequence of distribution functions. Then,
there exists a subsequence (nk)k and a right continuous nondecreasing function F such that

Fnk
(x) → F (x) for all continuity points x of F.

The issue with the above is that F need not be a distribution function:

Example 1.2.

1. Let Xn = n. Then, Fn(x) = I[n,∞)(x) and Fn(x) → 0 for all x.

2. Let Xn = −n. Then, Fn(x) = I[−n,∞)(x) and Fn(x) → 1 for all x.

Neither F = 0 nor F = 1 are distribution functions.

A criteria that ensures the limiting function is indeed a distribution function is tightness:

Definition 1.3. Let {Fα}α be a family of distribution functions. We say {Fα}α is tight if
for every ǫ > 0, there exists r sufficiently large such that

Fα(r)− Fα(−r) ≥ 1− ǫ

for all α.

Proposition 1.4. Suppose that (Fn)n is a tight sequence of distribution functions. Then,
there exists a subsequence (nk)k and a distribution function F such that Fnk

⇒ F .

In other words, the space of distribution functions is sequentially compact.

Proof. By Helly’s theorem, we can find a subsequence (nk)k and a right continuous nonde-
creasing function F such that

Fnk
(x) → F (x) for all continuity points x of F.

1



By tightness, we can find r such that

Fn(−r) + (1− Fn(r)) ≤ ǫ.

Since Fn(−r) and 1− Fn(r) are both nonnegative, this implies

Fn(−r) ≤ ǫ and 1− Fn(r) ≤ ǫ.

Now, choose xǫ > r so that both xǫ and −xǫ are continuity points of F . Then,

F (−xǫ) = lim
k

Fnk
(−xǫ) ≤ ǫ

and
1− F (xǫ) = lim

k
{1− Fnk

(xǫ)} ≤ ǫ.

Since ǫ was arbitrary, this implies

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1,

as desired.

2 Integration

We will work a lot with integrals today, so let’s digress and briefly talk about integration.
Suppose f : R → R is a continuous function. Then, the integral

∫ b

a

f(t)dt

can be interpreted as the limit of Riemann sums.
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What about when f is not a “nice” function? Let Y ∼ U [0, 1] and define

∫ b

a

f(t)dt ≡ (b− a)E [f(Y )] .

The above extends the theory of integration to Borel measurable functions f (recall that if
f is Borel measurable, f ◦ Y is a random variable). You can check that the definition of the
integral above satisfies all the usual conditions (e.g., linearity) and agrees with the Riemann
integral when f is “nice”.

Remark 2.1. You may have seen the Lebesgue integral. The above is not quite the Lebesgue
integral, since it is only defined for Borel measurable functions f .

The above tells us that we can apply things like the Monotone Convergence Theorem,
Fatou’s Lemma, and the Dominated Convergence Theorem to regular integrals by treating
them like expectations!

3 Lévy’s continuity theorem

Our next goal is to establish Paul Lévy’s continuity theorem, which (roughly speaking)
estabishes that a sequence of random variables converges in distribution if and only if their
characteristic functions converge pointwise.

3.1 Forward direction

We have already done all the hard work to prove the forward direction.

Proposition 3.1. If Xn
D
−→ X (i.e., Fn ⇒ F ) then E[eitXn ] ≡ φn(t) → φ(t) ≡ E[eitX ] for all

t.

Proof. Remember that convergence in distribution was equivalent to

E [f(Xn)] → E [f(X)]

for all bounded and continuous f . Let t be arbitrary and take f(x) = eitx so that

φn(t) = E
[

eitXn

]

→ E
[

eitX
]

= φ(t).

3.2 Reverse direction

The remainder of this section is dedicated to proving the reverse direction. Before we do so,
let X be a random variable and φ its characteristic function. Then, for any T > 0,

1

2T

∫ T

−T

φ(t)dt =
1

2T

∫ T

−T

E
[

eitX
]

dt

=
1

2T
E

[
∫ T

−T

eitXdt

]

=
1

2T
E

[

2 sin(TX)

X

]

= E

[

sin(TX)

TX

]
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where we have used the Fubini-Tonelli theorem to move the integration into the expectation
(take this as fact if you have yet to encounter Fubini-Tonelli). Now, let A > 0 and note that
if |x| > 2A, then

∣

∣

∣

∣

sin(Tx)

Tx

∣

∣

∣

∣

≤
1

2TA
.

Let B = {−2A < X ≤ 2A}. Then,
∣

∣

∣

∣

E

[

sin(TX)

TX

]
∣

∣

∣

∣

≤ E

[
∣

∣

∣

∣

sin(TX)

TX

∣

∣

∣

∣

IB +

∣

∣

∣

∣

sin(TX)

TX

∣

∣

∣

∣

IBc

]

≤ E

[

IB +
1

2TA
IBc

]

= (F (2A)− F (−2A)) +
1− (F (2A)− F (−2A))

2TA

=

(

1−
1

2TA

)

(F (2A)− F (−2A)) +
1

2TA
.

Now, take T = 1/A to get

A

2

∣

∣

∣

∣

∣

∫ 1/A

−1/A

φ(t)dt

∣

∣

∣

∣

∣

≤
1

2
(F (2A)− F (−2A)) +

1

2
.

Some algebra reveals

A

∣

∣

∣

∣

∣

∫ 1/A

−1/A

φ(t)dt

∣

∣

∣

∣

∣

− 1 ≤ F (2A)− F (−2A). (1)

In particular, (1) gives a criterion for tightness in terms of characteristic functions:

Proposition 3.2. Let (Xn)n be a sequence of random variables with distribution and char-
acteristic functions Fn and φn. The sequence (Fn)n is tight if for all ǫ > 0, there exists δ > 0
such that

1

δ

∣

∣

∣

∣

∫ δ

−δ

φn(t)dt

∣

∣

∣

∣

− 1 ≥ 1− ǫ.

Proof. Take A = 1/δ in (1).

We are now ready to prove the reverse direction.

Proposition 3.3 (Lévy’s continuity theorem). Let (Fn)n be a sequence of distribution func-
tions and φn be the characteristic function of Fn. Suppose φn → φ pointwise for some
function φ which is continuous at the origin (t = 0). Then, there exists a distribution
function F such that Fn ⇒ F and φ is the characteristic function of F .

Some notes:

• When we say “φ is the characteristic function of F ”, we mean that a random variable X
associated to F (e.g., take X = F−1(Y ) where Y ∼ U [0, 1]) has characteristic function
φ.
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• That φ is a characteristic function is one of the results of the theorem (the limit of
characteristic functions need not be a characteristic function in general).

Proof. Since φ is continuous at zero, we can choose δ small enough so that

|φ(t)− 1| < ǫ/4 whenever |t| < δ.

Now, for Y ∼ U [−δ, δ],

1

δ

∫ δ

−δ

φn(t)dt ≡ 2E [φn(Y )] → 2E [φ(Y )] ≡
1

δ

∫ δ

−δ

φ(t)dt

by the DCT. Therefore, we can choose N large enough such that for all n ≥ N ,

1

δ

∣

∣

∣

∣

∫ δ

−δ

φn(t)− φ(t)dt

∣

∣

∣

∣

<
ǫ

2
.

Next, note that

1

δ

∣

∣

∣

∣

∫ δ

−δ

φ(t)dt

∣

∣

∣

∣

=
1

δ

∣

∣

∣

∣

∫ δ

−δ

φ(t)− φn(t) + φn(t)dt

∣

∣

∣

∣

≤
1

δ

∣

∣

∣

∣

∫ δ

−δ

φ(t)− φn(t)dt

∣

∣

∣

∣

+
1

δ

∣

∣

∣

∣

∫ δ

−δ

φn(t)dt

∣

∣

∣

∣

<
ǫ

2
+

1

δ

∣

∣

∣

∣

∫ δ

−δ

φn(t)dt

∣

∣

∣

∣

.

Recalling that |φ(t)− 1| < ǫ/2 for all t ∈ [−δ, δ], it follows that

1

δ

∣

∣

∣

∣

∫ δ

−δ

φ(t)dt

∣

∣

∣

∣

≡ 2 |E [φ(Y )]| > 2
(

1−
ǫ

4

)

= 2−
ǫ

2
.

Therefore,

2−
ǫ

2
<

1

δ

∣

∣

∣

∣

∫ δ

−δ

φ(t)dt

∣

∣

∣

∣

<
ǫ

2
+

1

δ

∣

∣

∣

∣

∫ δ

−δ

φn(t)dt

∣

∣

∣

∣

.

Simplying,

2− ǫ <
1

δ

∣

∣

∣

∣

∫ δ

−δ

φn(t)dt

∣

∣

∣

∣

.

By Proposition 3.2, the sequence (Fn)n is tight. By Helly’s theorem, there exists a subse-
quence (Fnk

)k and a distribution function F such that Fnk
⇒ F . Let φ̃ be the characteristic

function of F . Then, by Proposition 3.1, φnk
→ φ̃ pointwise. But φn → φ, and hence φ = φ̃.

It can be shown that Fn ⇒ F , but the proof requires showing that convergence in
distribution is metrizable, which is out of the scope of this course.

We can finally return to a claim we made a long time ago about the relationship between
Poisson and Binomial random variables:
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Example 3.4. The characteristic function of Poisson(λ) is

φPoisson(λ)(t) = exp
(

λ
(

eit − 1
))

.

The characteristic function of B(n, pn) is

φB(n,pn)(t) =
(

(1− pn) + pne
it
)n

.

Suppose npn → λ as n → ∞. Then,

(

(1− pn) + pne
it
)n

=

(

1− npn
(

eit − 1
) 1

n

)n

→ exp
(

λ
(

eit − 1
))

.
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