
Math 525: Lecture 13

February 20, 2018

For the next few lectures, we will work towards proving the central limit theorem (CLT).
Recall that for a “sufficiently nice” sequence of i.i.d. random variables (Xn)n, the law of large
numbers told us

Sn

n
≡ X1 + · · ·+Xn

n
→ EX1 a.s.

The CLT will tell us about the distribution of Sn/n. Namely,

√
n

(

Sn

n
− EX1

)

D−→ Y

where Y ∼ N (0,Var(X1)). To prove the CLT, we will need to build up a series of results
culminating in Levy’s continuity theorem.

1 Convergence in distribution

We begin with an example:

Example 1.1. Let X = 0 be a “deterministic” random variable with distribution function
F = [0,∞).

1. Let Xn = − 1
n
. Then, its distribution function is Fn = I[1/n,∞). Note, in particular,

that
Fn(x) → F (x)

at all points x.

2. Now consider Xn = 1
n
. Then, its distribution function is Fn = I[ 1

n
,∞). Note, in

particular, that
Fn(x) → F (x)

for all x except x = 0 since Fn(0) = 0 for all n and F (0) = 1!

In the second example above, while we expect the distribution function of Xn to converge
to that of X (after all, Xn → X pointwise), it does not! The problem here is the point of
discontinuity of F at x = 0. This motivates the definition of convergence in distribution
(which we actually saw in a previous lecture).
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Definition 1.2. Let (Xn)n be a sequence of random variables and X be a random variable.
Let Fn and F denote the distribution functions of Xn and X, respectively. (Xn)n converges

to X in distribution if Fn(x) → F (x) for all continuity points of F . We write Xn
D−→ X or

Fn ⇒ F in this case.

The next proposition tells us that convergence in probability is stronger than convergence
in distribution (the converse is not true). This in turn implies that any kind of convergence
that we have covered (a.s. or Lp) are stronger than convergence in distribution.

Proposition 1.3. If Xn → X in probability, then Xn
D−→ X.

Proof. Let ǫ > 0. Trivially,

P {Xn ≤ x} = P {Xn ≤ x,X ≤ x+ ǫ}+ P {Xn ≤ x,X > x+ ǫ}
≤ P {X ≤ x+ ǫ}+ P {|Xn −X| > ǫ} .

In other words,
Fn(x) ≤ F (x+ ǫ) + P {|Xn −X| > ǫ} .

Similarly, we can show

F (x− ǫ) ≤ Fn(x) + P {|Xn −X| > ǫ} .

Combining these inequalities,

F (x− ǫ)− P {|Xn −X| > ǫ} ≤ Fn(x) ≤ F (x+ ǫ) + P {|Xn −X| > ǫ} .

Taking n→ ∞,

F (x− ǫ) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x+ ǫ).

If x is a point of continuity, taking ǫ ↓ 0 yields F (x− ǫ) → F (x) and F (x+ ǫ) → F (x), and
the result is proved.

We now visit an alternate characterization of convergence in distribution. Recall that
f : R → R is said to be bounded if we can find M > 0 such that |f(x)| ≤M for all x ∈ R.

Proposition 1.4. Xn
D−→ X if and only if for all bounded and continuous functions f : R →

R,
E [f(Xn)] → E [f(X)] . (1)

Proof (⇒). Suppose Xn
D−→ X. We start by establishing (1) for all continuous functions f

with compact support (i.e., f(x) = 0 if |x| ≥ r for some r > 0). In this case, f is uniformly
continuous.

Now, let ǫ > 0. Consider a partition {(xi−1, xi]}ni=1 of (−r, r] satisfying

|f(x)− f(xi)| < ǫ/2 for all x ∈ (xi−1, xi]
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and chosen such that each xi is a point of continuity of F , the distribution function of X.
Let ψ be the function defined by

ψ(x) =

n
∑

i=1

f(xi)I(xi−1,xi](x).

Note, in particular, that

|f(x)− ψ(x)| ≤
n

∑

i=1

|f(x)− f(xi)| I(xi−1,xi](x) < ǫ/2.

Recalling that any bounded random variable is trivially integrable, we have

|Ef(X)− Ef(Xn)| ≤ |Ef(X)− Eψ(X)|+ |Eψ(X)− Eψ(Xn)|+ |Eψ(Xn)− Ef(Xn)| .
The first and last expectations are bounded by ǫ/2. As for the middle expectation,

|Eψ(X)− Eψ(Xn)| = |E [ψ(X)− ψ(Xn)]|

=

∣

∣

∣

∣

∣

n
∑

i=1

f(xi)E
[

I(xi−1,xi](X)− I(xi−1,xi](Xn)
]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

f(xi) [(F (xi)− F (xi−1))− (Fn(xi)− Fn(xi−1))]

∣

∣

∣

∣

∣

Now, since each xi is a point of continuity of F , we have Fn(xi) → F (xi) for all i. Therefore,

lim sup
n

|Ef(X)− Ef(Xn)| < ǫ.

Now take ǫ ↓ 0 to get
lim
n

|Ef(X)− Ef(Xn)| = 0.

Now, let’s see how to modify the proof if f is just bounded and continuous but not
necessarily of compact support. Let ǫ > 0 and choose K such that ±K are continuity points
of F , F (−K) < ǫ/4 and F (K) > 1 − ǫ/4 (remember, F is a distribution function, so that
F (−x) → 0 and F (x) → 1 as x→ ∞). Let g be a continuous function such that g(x) = 1 if
|x| ≤ K and g(x) = 0 if |x| ≥ K + 1. Then, fg is continuous, equals f on [−K,K], and has
compact support. Therefore,

|Ef(X)− Ef(Xn)| ≤ ‖f‖∞ (P {X ≤ −K}+ P {Xn ≤ −K})
+ ‖f‖∞ (P {X > K}+ P {Xn > K}) + |E [f(X)g(X)]− E [f(Xn)g(Xn)]| . (2)

Note that

P {X ≤ −K} + P {Xn ≤ −K} = F (−K) + Fn(−K) → 2F (−K) < ǫ/2

Similarly,

P {X > K}+ P {Xn > K} = 1− F (K) + 1− Fn(K) → 2 (1− F (K)) < ǫ/2.

Therefore, the sum of the first two terms on the right hand side of (2) is bounded by ǫ‖f‖∞.
The last term is handled as in the previous paragraph, since fg has compact support.
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Proof (⇐). Suppose (1) holds for all bounded and continuous functions f . Let a be a point
of continuity of F . Let fm and gm be continuous and bounded functions such that

fm(x) =

{

1 if x ≤ a− 1/m

0 if x ≥ a

and

gm(x) =

{

1 if x ≤ a

0 if x ≥ a + 1/m.

Moreover, suppose fm and gm are linear on [a− 1/m, a] and [a, a + 1/m], respectively.
Note that fm ≤ I(−∞,a] ≤ gm. Therefore,

E [fm(Xn)] ≤ Fn(a) ≤ E [gm(Xn)]

since
E
[

I(−∞,a](Xn)
]

= P {Xn ≤ a} = Fn(a).

Now, by (1), we can take n→ ∞ to get E[fm(Xn)] → E[fm(X)] and E[gm(Xn)] → E[gm(X)].
Therefore,

E [fm(X)] ≤ lim inf
n

Fn(a) ≤ lim sup
n

Fn(a) ≤ E [gm(X)] .

Moreover, as m→ ∞, fm → I(−∞,a) and gm → I(−∞,a]. By the DCT,

E [fm(X)] → E
[

I(−∞,a)(X)
]

= P {X < a} = F (a−)

and
E [gm(X)] → E

[

I(−∞,a](X)
]

= P {X ≤ a} = F (a).

But a is a continuity point of F , and hence F (a−) = F (a), from which we get the desired
result.

2 Helly’s theorem

In the context of probability, Helly’s theorem is a compactness result for distribution func-
tions.

Proposition 2.1 (Helly’s theorem). Let (Fn)n be a sequence of distribution functions. Then,
there exists a subsequence (nk)k and a right continuous nondecreasing function F such that

Fnk
(x) → F (x) for all continuity points x of F.

Note that F is not necessarily a distribution, since for this to be true, we must have
F (−∞) = 0 and F (∞) = 1.
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Proof. Let x be arbitrary. Note that (Fn(x))n is a bounded sequence of real numbers, and
thereby admits a convergent subsequence.

Pick a dense countable subset of R, call it D = {x1, x2, . . .} (e.g., D = Q). By a
diagonalization argument, we can find a subsequence (Fnk

)k such that Fnk
converges on D.

Define
F̃ (x) = lim

k→∞
Fnk

(x) for x ∈ D

and
F̃ (x) = sup

D∋xk≤x
F̃ (xk) for x /∈ D.

Note that F̃ takes values in [0, 1] and is nondecreasing.
Let C be the set of continuity points of F̃ . Let x ∈ C be arbitrary. Choose y, ξ ∈ D with

y < x < ξ. Therefore, Fnk
(y) ≤ Fnk

(x) ≤ Fnk
(ξ). Letting k → ∞,

F̃ (y) ≤ lim inf
k

Fnk
(x) ≤ lim sup

k
Fnk

(x) ≤ F̃ (ξ).

Now, let y and ξ tend to x (from below and above) to get that

lim
k
Fnk

(x) = F̃ (x).

The only problem now is that F̃ is not necessarily right continuous. Define the function F
by

F (x) =

{

F̃ (x) if x ∈ C
limy↓x F̃ (y) otherwise.

Then, F satisfies our requirements.

5


