
Math 525: Lecture 11

February 8, 2018

1 Laws of large numbers

Intuitively, we know that

number of successes in n independent trials

n
→ P(success)

as n → ∞. This lecture aims to prove this.
Let’s first restate the above in terms of random variables. Let Xi be the random variable

whose value is 1 if the i-th trial is a success and whose value is 0 otherwise. In other words,

Xi = I{i-th trial is a success}.

Since the trials are independent, we must assume that Xi is independent of Xj for i 6= j.
Then, the number of successes in the first n trials is simply

X1 + · · ·+Xn

Using this notation, our first claim becomes

1

n
(X1 + · · ·+Xn) → E[X1],

which is a statement about sums of random variables converging to the mean µ = E[X1] (we
are purposely vague as to the type of convergence for the time being). Defining X ′

i = Xi−µ
and using the claim above, note that

1

n
(X1 + · · ·+Xn)− µ =

1

n
(X1 − µ+ · · ·+Xn − µ) =

1

n
(X ′

1 + · · ·+X ′
n) → 0

and hence we can simply focus on the mean-zero case.

Proposition 1.1 (Weak law of large numbers). Let (Xn)n be an i.i.d. sequence of square

integrable, mean zero random variables. Then,

1

n
(X1 + · · ·+Xn) → 0

in probability.
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For the remainder of this lecture, we will use the notation Sn = X1 + · · ·+Xn.

Proof. First, note that

E

[

(

1

n
Sn

)2
]

=
1

n2
E [X1X1 +X1X2 + · · ·+X1Xn + · · ·+XnXn] .

By independence, E[XiXj] = 0 whenever i 6= j. Therefore, the above becomes

E

[

(

1

n
Sn

)2
]

=
1

n2

(

E
[

X2
1

]

+ · · ·+ E
[

X2
n

])

=
nσ2

n2
=

σ2

n

where we have used σ2 = E[X2
1 ]. By Markov’s/Chebyshev’s inequality,

P

{

1

n
|Sn| ≥ ǫ

}

≤ 1

ǫ2
σ2

n
→ 0.

The above is called a “weak law” since convergence is in probability. There are various
“strong laws” which guarantee convergence a.e. Here’s one:

Proposition 1.2 (Cantelli’s strong law of large numbers). Let (Xn)n be an i.i.d. sequence

of mean zero random variables, with X4
1 integrable. Then,

1

n
Sn → 0 a.s.

Proof. Note that

E

[

(

1

n
Sn

)4
]

=
1

n4

∑

1≤i,j,k,ℓ≤n

E [XiXjXkXℓ] .

Using the same arguments as in the proof of the weak law of large numbers, note that the
only terms that do not have expectation of zero in the sum are of the form X4

i and X2
i X

2
j

for i 6= j. That is,

E

[

(

1

n
Sn

)4
]

=
1

n4

n
∑

i=1









E
[

X4
i

]

+
n

∑

j=1
j 6=i

E
[

X2
i X

2
j

]









.

Let E[X4
1 ] = M . Then,

E
[

X2
i X

2
j

]

≤
√

E [X4
i ]E

[

X4
j

]

≤
√
M ·M = M

so that

E

[

(

1

n
Sn

)4
]

≤ 1

n4

n
∑

i=1

(M + (n− 1)M) =
M + (n− 1)M

n3
=

M

n2
.
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Chebyshev’s inequality tells us

P

{ |Sn|
n

≥ λ

}

≤ 1

λ4

M

n2
.

Pick λ = n−1/8 and define

Λn =

{ |Sn|
n

≥ 1

n1/8

}

so that
∑

n

P(Λn) ≤
∑

n

M

n3/2
< ∞.

Now, the Borel-Cantelli lemma tells us

1− P(lim inf
n

Λc
n) = P(lim sup

n
Λn) = 0.

In other words, for all ω ∈ lim infnΛ
c
n, we can find N(ω) such that for all n ≥ N(ω),

|Sn|
n

<
1

n1/8
.

That is, Sn/n converges to zero a.s.

2 Empirical distribution

Let (Xn)n be a sequence of i.i.d. random variables and define its empirical distribution by

Fn(x) =
1

n
|{j ≤ n : Xj ≤ x}| .

In other words, Fn(x) counts exactly how many of the first n random variables are at most x.
Unlike the distribution function F , Fn(x) is itself a random variable. Sometimes, we might
write

(Fn(x))(ω)

to stress this fact.

Proposition 2.1. Let (Xn)n be a sequence of i.i.d. random variables with distribution func-

tion F and empirical distribution Fn. Then,

Fn → F a.s.

Actually, Fn → F in a stronger sense than pointwise, but we will not prove that.
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Figure 1: Empirical distribution converging to the actual distribution

Proof. Let (Un)n be a sequence i.i.d. U [0, 1] random variables with empirical distribution
F 0
n . Let F 0 be the actual distribution function of U1. Now, fix x ∈ [0, 1] and let Yi = I{Ui≤x}.

Note that E[Yi] = P(Ui ≤ x) = x. Then,

1

n

n
∑

i=1

Yi = F 0
n(x).

Since E[Y 4
i ] is a constant independent of i, Cantelli’s strong law of large numbers tells us

F 0
n(x) → F 0(x) a.s.

It remains to extend this to general random variables. We will not do the most general
case here and instead focus on the case when F is bijective. Without loss of generality,
Xn = F−1(Un). Therefore,

Fn(x) =
1

n
|{j ≤ n : Xj ≤ x}| = 1

n

∣

∣

{

j ≤ n : F−1(Uj) ≤ x
}∣

∣ =
1

n
|{j ≤ n : Uj ≤ F (x)}|

= F 0
n(F (x)).

Since F 0(x) = x whenever x ∈ [0, 1],

|F (x)− Fn(x)| =
∣

∣F 0(F (x))− F 0
n(F (x))

∣

∣ → 0 a.s.,

as desired.

3 Bernstein polynomials

In a real analysis course, you might have learned that the set of all polynomials on [0, 1], call
it P[0, 1], is dense in C[0, 1], the set of all continuous real-valued functions from [0, 1]. This
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is called the Stone-Weirestrass theorem. We now give a constructive proof of this fact, using
probability theory!

Figure 2: Bernstein polynomials approximating a nondifferentiable function

Proposition 3.1. Let f be continuous on [0, 1]. Then, there exists a sequence (pn)n of

polynomials on [0, 1] such that pn → f uniformly. That is,

‖pn − f‖∞ → 0 as n → ∞.

where ‖g‖∞ = supx |g(x)|. Moreover, these polynomials, called Bernstein polynomials, have

the form

pn(x) =
n

∑

k=0

f

(

k

n

)(

n

k

)

xk (1− x)n−k .

Proof. Let (Xn)n be a sequence of i.i.d. Bernoulli(p) random variables, for some 0 ≤ p ≤ 1.
As usual, define Sn = X1 + · · · + Xn. Note that Sn ∼ B(n, p), and hence E[Sn] = np
(equivalently, E[ 1

n
Sn] = p). Moreover, Var(Sn) = np(1− p).

By the strong law of large numbers, Sn/n → p a.s. Let δ > 0. By Chebyshev’s inequality,

P

{∣

∣

∣

∣

1

n
Sn − p

∣

∣

∣

∣

≥ δ

}

≤ 1

δ2
E

[

∣

∣

∣

∣

1

n
Sn − p

∣

∣

∣

∣

2
]

=
Var( 1

n
Sn)

δ2
=

Var(Sn)

n2δ2
=

p (1− p)

nδ2
≤ 1

4nδ2
.

The last step is since

max
p∈[0,1]

p (1− p) =
1

4

(you can prove that by ordinary calculus: take the first derivative and set it to zero).
Now, let f ∈ C[0, 1] be arbitrary. Since

1

n
Sn → p a.s.
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a.s., then by continuity,

f

(

1

n
Sn

)

→ f(p) a.s.

By the dominated convergence theorem,

E

[

f

(

1

n
Sn

)]

→ E [f (p)] = f(p).

Let ǫ > 0. Since continuity and uniform continuity are equivalent on compact sets, we can
pick δ > 0 such that for |f(x)− f(y)| < ǫ whenever |x− y| < δ. Therefore,

E

[∣

∣

∣

∣

f

(

1

n
Sn

)

− f(p)

∣

∣

∣

∣

]

≤ ǫP

{∣

∣

∣

∣

1

n
Sn − p

∣

∣

∣

∣

< δ

}

+ 2‖f‖∞P

{∣

∣

∣

∣

1

n
Sn − p

∣

∣

∣

∣

≥ δ

}

≤ ǫ+ 2‖f‖∞
1

4nδ2
.

Since this bound is independent of p, we see E[f(Sn/n)] → f(p) uniformly. Now, if we set
p = x,

E

[

f

(

1

n
Sn

)]

=
n

∑

k=0

f

(

k

n

)(

n

k

)

xn (1− x)n−k .

The right hand side above defines the n-th Bernstein polynomial, pn(x).
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