Math 525: Lecture 10

February 6, 2018

1 Limits of expectations
Remember the moment generating function of a random variable X? It looked like
M(9) =E [¢"¥].

We claimed that M () “generates the moments” in the sense that M *)(0) = E[X*] for k € N.
However, we did not justify this claim rigorously, as doing so required us to deal with limits
under the expectation. In particular, we wanted to write

M(0) =E 3
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but we were unable to justify the second equality above.

Motivated by this (and other applications), we will talk today about limits of expecta-
tions. That is, given a sequence of random variables (X, ),,, can we conclude that lim,, E[X,,] =
E[lim,, X,]? The answer is, “most of the time, but not always™

Example 1.1. Let Y ~ U[0, 1] and X,, = nlj1/n(Y). Then,
E[X,]=nP(Y <1/n)=1
but X,, — 0 a.s.! That is, 1 = lim,, E[X,,] # E[lim,, X,,] = 0.

We start out with a simple limit theorem for expectations. To simplify notation, let
x Ay = min{z,y}. For the remainder, it should be understood that all random variables are
extended real valued.

Proposition 1.2. Let X be a random variable such that X > 0 a.s. Then,

lim E[X An]= lim E[X].
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This is true even when X is not integrable (i.e., E[X] = 00).



Proof. Note that
XAn= nI{X:oo} + (X N n) [{X<oo}-

Therefore, if P{X = oo} > 0,
E[X]EIE[X/\n]zE[n[{X:OO}}:nIP’{X:oo}—>oo as n — 0o

and the claim is trivially true. Therefore, we may proceed assuming X is finite everywhere.
Note that
Kk An= Xk[{ikSN} + "I{&pn}’

Therefore,

E[X An| >

=1

Taking limits in the above inequality,

lim E[X An] 2 lim E[X,] = E[X].
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The reverse inequality is trivial: since E[X] > E[X A n] for all n,

E[X] > lim E[X An].
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Recall that a nondecreasing sequence of real numbers (a,), can do one of two things:
converge to a finite limit, or diverge to co. The Monotone Convergence Theorem (up next)
is the analogue of this claim for random variables (or, more generally, measurable functions).

Proposition 1.3 (Monotone Convergence Theorem). Consider a sequence of random vari-
bles (Xn)n satisfying 0 < Xy < Xo <--- a.s. and X,, = X a.s. Then,

lim E[X,] = E[X].

n—o0

As before, this is true even when X is not integrable (i.e., E[X] = 00).



Proof. As usual, we can ignore the “a.s.” (though you should convince yourself carefully that
this is the case).

Taking expectations of the inequality, we get 0 < EX; < EX; < ---. Therefore,
lim, E[X,] < E[X] (note that lim, E[X,] may be infinite). Therefore, if we can estab-
lish the reverse inequality lim,, E[X,] > E[X], we will be done. By Proposition 1.2, E[X,,] =
limy E[X,, A N] and E[X] = limy E[X A N] and hence it is sufficient to establish

lim E[X,, A N] > E[X A N] for all V.

Fix Nand let Y = X AN and Y,, = X,, A N. Trivially, Y and Yy are integrable. Let
€ >0 and
A ={Y =Y, > €}.

Note that Ac; D Aco D - -+ is a decreasing sequence of sets (since Y; < Y, < ---) and hence
by continuity of the probability measure,

P(Acn) = P(NpAcn) as n — 0.
Moreover, since Y,, — Y a.s., N, A., = 0. Note that
Y =Y, < NIy, +ela,
and hence
EY]-E[Y,] =E[Y —=Y,] <E[Nl4,, +ela, ] < NP(A.,) + eP(AL,) < NP(Acp) + €.

Taking limits,
EY]-ImE[Y,] <e
Taking € — 0 gives us the desired inequality. O

The monotone convergence theorem was for nonnegative increasing sequences. What
about decreasing sequences?

Corollary 1.4. Consider a sequence of random varibles (X,,),, satisfying X1 > Xy > -+ >0
a.s. and X,, — X a.s. If Xy is integrable, then

lim E[X,] = E[X].
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Proof. Let Y, = X; — X,, and note that Y,, increases to Y = X; — X. Therefore, by the
Monotone Convergence Theorem,

lim E[Y,] = E[Y].
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Now, E[Y] = E[X;] — E[X] due to integrability. Similarly, E[Y,] = E[X;] — E[X,,]. Plugging
these into the above and simplifying, we obtain the desired result. O

It is not possible to remove the integrability condition from the above:



Example 1.5. Let Y ~ U[0, 1] and X,, = -—. Then,
1 1
1 1 1 1
E[X,] = —dy = —/ —dy = —lim (log 1 — logy) = oc.
0 ny n 0 y n ylo
However, X,, | 0 a.s.

Proposition 1.6 (Fatou’s Lemma). Let (X,,), be a sequence of random variables with X, >
0 a.s. Then,

liminf E[X,] > E [hm inf Xn] .
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Proof. Trivially,
E[X,]>E {inf X]} .
jzn
Letting Y;, = inf;>, X and applying limit inferiors to both sides of the above inequality,

liminf E [X,,] > liminf E[Y,,].

Note, in particular, that Y,, is a nondecreasing sequence. Therefore, by the Monotone Con-
vergence Theorem,

imE[Y,] = E [hﬁﬂ Yn} —E {hgln inf Xj} —E [h% inf Xn] .

O

Proposition 1.7. Let (X,), be a sequence of random variables dominated by some integrable
random variable Y (i.e., E|Y| < oo and | X,| <Y ) such that X, — X a.s. Then,

E[X,] — [X].

Proof. First, we handle the a.s. case. Indeed, suppose X,, — X a.s. Then, Y — X, > 0 a.s.
and Y — X,, = Y — X a.s. By Fatou’s lemma,

E[Y]-limsupE[X,] = liminf E[Y — X,] > E [hm inf (Y — Xn)] —E[Y]-E [lim sup Xn}

—E[Y]-E [lign Xn} .
Therefore,
limnsupE X,] <E [liTan Xn} .
An identical argument with Y 4+ X,, > 0 yields
lim inf E [X,] > E [ngn Xn} .

Combining the two inequalities above, the desired result follows. O
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Corollary 1.8. Let (X,,), be a sequence of random variables dominated by a real number
(i.e., | Xn| < M) such that X,, — X a.s. Then,

E[Xy] — [X].
Proof. Take Y = M in the Dominated Convergence Theorem. O

Corollary 1.9. Let (X,,), be a sequence of random variables satisfying the requirements of

the Dominated Convergence Theorem. Then, X, ]L—1> X.

Proof. Note that | X,, — X| < 2Y and |X,, — X| — 0. Therefore, E|X,, — X| — 0 by the
Dominated Convergence Theorem, and hence the sequence converges in L. O

Conversely, if we have a sequence (X,,), converging to some X in L!,
EX, —EX|=E[|X, - X|| =0

and hence it is trivially the case that EX,, — EX.



