
Math 525: Lecture 10

February 6, 2018

1 Limits of expectations

Remember the moment generating function of a random variable X? It looked like

M(θ) = E
[

eθX
]

.

We claimed that M(θ) “generates the moments” in the sense that M (k)(0) = E[Xk] for k ∈ N.
However, we did not justify this claim rigorously, as doing so required us to deal with limits
under the expectation. In particular, we wanted to write

M(θ) = E

[

lim
n→∞

N
∑

n=0

θn

n!
Xn

]

= lim
n→∞

E

[

N
∑

n=0

θn

n!
Xn

]

= lim
n→∞

N
∑

n=0

θn

n!
E [Xn] ,

but we were unable to justify the second equality above.
Motivated by this (and other applications), we will talk today about limits of expecta-

tions. That is, given a sequence of random variables (Xn)n, can we conclude that limn E[Xn] =
E[limn Xn]? The answer is, “most of the time, but not always”:

Example 1.1. Let Y ∼ U [0, 1] and Xn = nI[0,1/n](Y ). Then,

E [Xn] = nP(Y ≤ 1/n) = 1

but Xn → 0 a.s.! That is, 1 = limn E[Xn] 6= E[limnXn] = 0.

We start out with a simple limit theorem for expectations. To simplify notation, let
x∧ y = min{x, y}. For the remainder, it should be understood that all random variables are
extended real valued.

Proposition 1.2. Let X be a random variable such that X ≥ 0 a.s. Then,

lim
n→∞

E [X ∧ n] = lim
n→∞

E [X ] .

This is true even when X is not integrable (i.e., E[X ] = ∞).
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Proof. Note that
X ∧ n = nI{X=∞} + (X ∧ n) I{X<∞}.

Therefore, if P{X = ∞} > 0,

E [X ] ≥ E [X ∧ n] ≥ E
[

nI{X=∞}

]

= nP {X = ∞} → ∞ as n → ∞

and the claim is trivially true. Therefore, we may proceed assuming X is finite everywhere.
Note that

Xk ∧ n = XkI{Xk≤n} + nI{Xk>n}.

Therefore,

E [X ∧ n] ≥ E [Xk ∧ n]

≥ E
[

XkI{Xk≤n}

]

=
2kn
∑

j=1

j

2k
P

{

Xk =
j

2k

}

.

If we take limits of both sides of this inequality,

lim
n→∞

E [X ∧ n] ≥
∞
∑

j=1

j

2k
P

{

Xk =
j

2k

}

= E [Xk] .

Taking limits in the above inequality,

lim
n→∞

E [X ∧ n] ≥ lim
k→∞

E [Xk] = E [X ] .

The reverse inequality is trivial: since E[X ] ≥ E[X ∧ n] for all n,

E [X ] ≥ lim
n→∞

E [X ∧ n] .

Recall that a nondecreasing sequence of real numbers (an)n can do one of two things:
converge to a finite limit, or diverge to ∞. The Monotone Convergence Theorem (up next)
is the analogue of this claim for random variables (or, more generally, measurable functions).

Proposition 1.3 (Monotone Convergence Theorem). Consider a sequence of random vari-
bles (Xn)n satisfying 0 ≤ X1 ≤ X2 ≤ · · · a.s. and Xn → X a.s. Then,

lim
n→∞

E [Xn] = E [X ] .

As before, this is true even when X is not integrable (i.e., E[X ] = ∞).
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Proof. As usual, we can ignore the “a.s.” (though you should convince yourself carefully that
this is the case).

Taking expectations of the inequality, we get 0 ≤ EX1 ≤ EX2 ≤ · · · . Therefore,
limn E[Xn] ≤ E[X ] (note that limn E[Xn] may be infinite). Therefore, if we can estab-
lish the reverse inequality limn E[Xn] ≥ E[X ], we will be done. By Proposition 1.2, E[Xn] =
limN E[Xn ∧N ] and E[X ] = limN E[X ∧N ] and hence it is sufficient to establish

lim
n

E[Xn ∧N ] ≥ E[X ∧N ] for all N.

Fix N and let Y = X ∧ N and Yn = Xn ∧ N . Trivially, Y and YN are integrable. Let
ǫ > 0 and

Aǫ,n = {Y − Yn ≥ ǫ} .

Note that Aǫ,1 ⊃ Aǫ,2 ⊃ · · · is a decreasing sequence of sets (since Y1 ≤ Y2 ≤ · · · ) and hence
by continuity of the probability measure,

P(Aǫ,n) → P(∩nAǫ,n) as n → ∞.

Moreover, since Yn → Y a.s., ∩nAǫ,n = ∅. Note that

Y − Yn ≤ NIAǫ,n
+ ǫIAc

ǫ,n

and hence

E [Y ]− E [Yn] = E [Y − Yn] ≤ E
[

NIAǫ,n
+ ǫIAc

ǫ,n

]

≤ NP(Aǫ,n) + ǫP(Ac
ǫ,n) ≤ NP(Aǫ,n) + ǫ.

Taking limits,
E [Y ]− lim

n
E [Yn] ≤ ǫ.

Taking ǫ → 0 gives us the desired inequality.

The monotone convergence theorem was for nonnegative increasing sequences. What
about decreasing sequences?

Corollary 1.4. Consider a sequence of random varibles (Xn)n satisfying X1 ≥ X2 ≥ · · · ≥ 0
a.s. and Xn → X a.s. If X1 is integrable, then

lim
n→∞

E [Xn] = E [X ] .

Proof. Let Yn = X1 − Xn and note that Yn increases to Y = X1 − X. Therefore, by the
Monotone Convergence Theorem,

lim
n→∞

E [Yn] = E [Y ] .

Now, E[Y ] = E[X1]−E[X ] due to integrability. Similarly, E[Yn] = E[X1]− E[Xn]. Plugging
these into the above and simplifying, we obtain the desired result.

It is not possible to remove the integrability condition from the above:
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Example 1.5. Let Y ∼ U [0, 1] and Xn = 1
nY

. Then,

E [Xn] =

∫ 1

0

1

ny
dy =

1

n

∫ 1

0

1

y
dy =

1

n
lim
y↓0

(log 1− log y) = ∞.

However, Xn ↓ 0 a.s.

Proposition 1.6 (Fatou’s Lemma). Let (Xn)n be a sequence of random variables with Xn ≥
0 a.s. Then,

lim inf
n→∞

E [Xn] ≥ E

[

lim inf
n→∞

Xn

]

.

Proof. Trivially,

E [Xn] ≥ E

[

inf
j≥n

Xj

]

.

Letting Yn = infj≥nXj and applying limit inferiors to both sides of the above inequality,

lim inf
n

E [Xn] ≥ lim inf
n

E [Yn] .

Note, in particular, that Yn is a nondecreasing sequence. Therefore, by the Monotone Con-
vergence Theorem,

lim
n

E [Yn] = E

[

lim
n

Yn

]

= E

[

lim
n

inf
j≥n

Xj

]

= E

[

lim inf
n

Xn

]

.

Proposition 1.7. Let (Xn)n be a sequence of random variables dominated by some integrable
random variable Y (i.e., E|Y | < ∞ and |Xn| ≤ Y ) such that Xn → X a.s. Then,

E [Xn] → [X ] .

Proof. First, we handle the a.s. case. Indeed, suppose Xn → X a.s. Then, Y −Xn ≥ 0 a.s.
and Y −Xn → Y −X a.s. By Fatou’s lemma,

E [Y ]−lim sup
n

E [Xn] = lim inf
n

E [Y −Xn] ≥ E

[

lim inf
n

(Y −Xn)
]

= E [Y ]−E

[

lim sup
n

Xn

]

= E [Y ]− E

[

lim
n

Xn

]

.

Therefore,

lim sup
n

E [Xn] ≤ E

[

lim
n

Xn

]

.

An identical argument with Y +Xn ≥ 0 yields

lim inf
n

E [Xn] ≥ E

[

lim
n

Xn

]

.

Combining the two inequalities above, the desired result follows.
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Corollary 1.8. Let (Xn)n be a sequence of random variables dominated by a real number
(i.e., |Xn| ≤ M) such that Xn → X a.s. Then,

E [Xn] → [X ] .

Proof. Take Y = M in the Dominated Convergence Theorem.

Corollary 1.9. Let (Xn)n be a sequence of random variables satisfying the requirements of

the Dominated Convergence Theorem. Then, Xn
L1

−→ X.

Proof. Note that |Xn − X| ≤ 2Y and |Xn − X| → 0. Therefore, E|Xn − X| → 0 by the
Dominated Convergence Theorem, and hence the sequence converges in L

1.

Conversely, if we have a sequence (Xn)n converging to some X in L
1,

|EXn − EX| = E [|Xn −X|] → 0

and hence it is trivially the case that EXn → EX.

5


