
Math 525: Lecture 1

January 4, 2018

1 Motivation

Example 1.1. A coin is tossed whose sides are labelled H and T .

Arguably, if we knew the exact conditions of the coin toss, we could use the laws of
physics to accurately predict its outcome. Of course, this approach is impractical! It is more
useful to assign a belief to each outcome in order to aid our prediction-making. For example,
we may assign a 1/2 “probability” to each outcome if we believe the coin to be fair. But
what do we mean by “probability”, and what laws (a.k.a. axioms) does it abide by?

Remark 1.2. The coin tossing example is a mundane one: probability has much more exciting
applications (e.g., financial analysis, machine learning, etc.).

2 Probability space

2.1 Sample space

Recall Example 1.1. H and T are referred to as outcomes of the coin tossing experiment.
We can gather these outcomes into a single set Ω = {H, T}, referred to as the sample space.

Example 2.1. A coin is tossed 3 times. We record the result of each coin toss. The sample
space for this experiment is

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT} .

Note that |Ω| = 23. If the coin is tossed n times, |Ω| = 2n.

The example above deals with a finite sample space. Can we think of an example with
an infinite sample space?

Example 2.2. A coin is tossed repeatedly until the first occurrence of H , at which point
we record the total number of tosses. The sample space is

Ω = {1, 2, . . .} = N.

The example above deals with a countably infinite sample space. Can we think of an
example with an uncountable sample space?
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Example 2.3. A coin is tossed. Once the result (H or T ) is recorded, the coin is tossed
again. This process continues ad infinitum. The sample space is

Ω = {(ω1, ω2, . . .) : ωi = H or ωi = T} .

For example, the outcome in which all tosses result in heads is written (H,H,H, . . .) ∈ Ω
(or, omitting the parentheses and commas for brevity, HHH . . .).

2.2 σ-algebra

Recall Example 2.1, in which a coin is tossed 3 times. We may be interested in answering
questions of the following form:

1. What is the “probability” that there are an even number of heads?

2. What is the “probability” that the first toss is a head?

3. What is the “probability” that the first toss is not a head?

4. What is the “probability” that the first toss is not a head or there are an even number
of heads?

The set of outcomes in which there are an even number of heads is a subset of the sample
space Ω. Primarily, it is the set

A1 = {HHT,HTH, THH, TTT} .

Similarly, the set of outcomes in which the first toss is a head is

A2 = {HHH,HHT,HTH,HTT} .

We can continue in this way to describe the set of outcomes for the remaining two questions
above. They are A3 = Ac

2 ≡ Ω \A2 and A4 = A1 ∪A3.

Definition 2.4. A subset of Ω is called an event.

As hinted at above, we would like to be able to take complements of an event A to
describe its non-occurrence and unions of events A and B in order to describe two (or more)
events occurring simultaneously.

Definition 2.5. The power set of Ω, denoted 2Ω, is the set of all subsets of Ω.

Example 2.6. Let Ω = {1, 2, 3, . . . , 6}, corresponding to rolling a six-sided dice. Then,

2Ω = {∅, {1} , {2} , . . . , {6} , {1, 2} , {1, 3} , . . . , {5, 6} , . . . ,Ω} .

Note that |2Ω| = 2|Ω| (in this case, 2|Ω| = 26 = 64).

Definition 2.7. An algebra (a.k.a. field) on Ω is a set F ⊂ 2Ω satisfying the following
properties:
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1. ∅ ∈ F .

2. if A ∈ F , then Ac ∈ F .

3. if A,B ∈ F , then A ∪B ∈ F .

Proposition 2.8. Let F be an algebra on Ω.

1. Ω ∈ F .

2. If A1, . . . , An ∈ F , then A1 ∪ · · · ∪An ∈ F .

3. If A1, . . . , An ∈ F , then A1 ∩ · · · ∩An ∈ F .

Proof. The first claim is established by noting that Ω = ∅c. The next claim is established
by writing

A1 ∪ · · · ∪ An = (A1 ∪ · · · ∪An−1) ∪An

and applying induction. The last claim follows by De Morgan’s law:

A1 ∩ · · · ∩ An = ((A1 ∩ · · · ∩An)
c)

c
= (Ac

1 ∪ · · · ∪ Ac
n)

c .

Algebras are fine for finite sample spaces, but they are not particularly useful for infinite
sample spaces, since they do not guarantee that a countable union of events (i.e., ∪n≥1An)
is itself an event. When dealing with infinite sample spaces, we require the notion of a
σ-algebra:

Definition 2.9. Let F be an algebra on Ω such that A1∪A2∪· · · ∈ F whenever A1, A2, . . . ∈
F . We call F a σ-algebra (a.k.a. σ-field).

Example 2.10. For any sample space Ω, F = {∅,Ω} is the so-called trivial σ-algebra.

Example 2.11. For any sample space Ω, F = 2Ω is the so-called discrete σ-algebra.

Remark 2.12. At this point, you may ask, why do we need σ-algebras aside from the discrete
σ-algebra? After all, the discrete σ-algebra has every possible event that we might be
interested in. As it turns out, we can always use the discrete σ-algebra for finite (and even
countably infinite) sample spaces, but attempting to do so for an uncountable sample space
turns out to have some bad consequences, which are out of the scope of this course.

Exercise 2.13. Let F be a σ-algebra on Ω. If A1, A2, . . . ∈ F , then A1 ∩ A2 ∩ · · · ∈ F .

Exercise 2.14. Let {Fα}α∈A be a family of σ-algebras (on Ω). Then, F = ∩α∈AFα is a
σ-algebra.
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2.3 Probability measure

To each event A, we would like to associate a number 0 ≤ P(A) ≤ 1, the probability of the
event A occurring. The intuitive interpretation of P(A) = 0 (resp. P(A) = 1) is that the
event A does not occur with certainty (resp. occurs with certainty). A larger value of P(A)
means that we “believe” A to be more likely to occur. We define P rigorously below:

Definition 2.15. Given a σ-algebra F on Ω, a probability measure is a function P : F → [0, 1]
satisfying the following properties:

1. P(∅) = 0.

2. P(Ω) = 1.

3. P is countably additive. That is, if A1, A2, . . . ∈ F are disjoint (i.e., Ai ∩ Aj = ∅
whenever i 6= j), then

P

(

∑

n≥1

An

)

=
∑

n≥1

P(An).

Remark 2.16. Recall that in Remark 2.12, we mentioned that in the case of an uncountable
sample space, we are unable to take F = 2Ω due to technical issues. For example, if we
have the sample space Ω = [0, 1]n and we take F = 2Ω, it becomes impossible to even define
something as simple as a uniform distribution P on Ω. A deep study of this phenomenon is
beyond the scope of this course.

Definition 2.17. The triple (Ω,F ,P) is called a probability space.

Example 2.18. The probability space associated with Example 1.1 is (Ω,F ,P) where Ω =
{H, T}, F = {∅, {H}, {T},Ω}, and

P({a}) =

{

p if a = H

1− p if a = T
where 0 ≤ p ≤ 1.

If the coin is fair, p = 1/2.

Remark 2.19. A probability measure is an example of a measure µ, which satisfies all of the
above points save for µ(Ω) = 1. In this case, (Ω,F , µ) is simply called a measure space.

Exercise 2.20. A probability measure P satisfies the following properties:

1. P(Ac) = 1− P(A).

2. P(A) ≤ P(B) whenever A ⊂ B.

3. If A1, . . . , An ∈ F , then

P(∪iAi) =
∑

i

P(Ai)−
∑

i<j

P(Ai∩Aj)+
∑

i<j<k

P(Ai∩Aj∩Ak)−· · ·+(−1)n+1
P(A1∩· · ·∩An).
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Recall that definition of continuity by sequences: f is continuous if f(xn) → f(x) when-
ever xn → x. We now establish that P is continuous in a similar sense:

Proposition 2.21. Let A1, A2, . . . be an increasing sequence in F (i.e., A1 ⊂ A2 ⊂ · · · ) and
define A = ∪n≥1An. Then, P(An) → P(A). Similarly, if B1, B2, . . . is a decreasing sequence
in F (i.e., B1 ⊃ B2 ⊃ · · · ), we define B = ∩n≥1Bn. Then, P(Bn) → P(B).

Proof. It is sufficient to prove the first statement, since the second follows by defining An =
Bc

n and noting that

1− P(Bn) = P(Bc
n) = P(An) → P(A) = P(Bc) = 1− P(B).

To prove the first statement, define C1 = A1 and Cn = An \An−1 for n > 1. Then,

P(A) = P(∪n≥1Cn) = P(C1) +
∑

n>1

P(Cn) = P(A1) +
∑

n>1

P(An)− P(An−1)

= P(A1) + lim
N→∞

N
∑

n=2

P(An)− P(An−1) = lim
N→∞

{

P(A1) +
N
∑

n=2

P(An)− P(An−1)

}

= lim
N→∞

P(AN)

as desired.
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