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1. If x1, x2, . . ., xy are points in the unit S-dimensional cube Gs, we may approximate to an
integral over Gs by the average of the values of the integrand at these points.  Writing

1 1 1 N
f .. J- S, x@ o xS)dx D (x"“’:N Ef(xﬁ”, ce XY R,
0 0 5
i=1

(1)

(where {9, x2) . . ., 2§ are the S coordinates of the point x;), we call R the “error’ of the quadrature
formula (1). R depends on the integrand f and on the set of points x4, . . . , xy; for R to be relativel
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small for some wide class of functions the set of points should be, in some sense, well distributed
in the cube Gs. An appropriate sense of “well distributed’ is that, for a region 4 in Gg, the number
of points of the set which lie in 4 should be approximately N times the volume of 4. Restricting
attention to regions which are intervals with one vertex at the origin—i.e., which are of the form

{x=@EW, ..., 01D <, i=1,2,...,S}
for some given xo=(x{", . . ., x{")eGs—we shall let Sy(x{V, . .., x{®) denote the number of the
points xi, . .. xy which lie in such an interval, and consider the quantity |Syx{V, ..., x{%)
—NaxPx@, . .. af®|.
Let
D =D}, ..., xn)=sup |Snx{, . . ., ) =N, ... 2l®)]. 2)
X()GGS

D} is very nearly the “discrepancy” (see, e.g., [1])! of the set of N points. E. Hlawka [2] has
shown that if the integrand fin (1) is a function of bounded variation and V' (f) is its total variation,
we have the bound

R <vin Sk ®

! Figures in brackets indicate the literature references at the end of this paper.
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Since it is very likely true that all continuous and bounded functions that one ever attempts to
integrate numerically are of bounded variation, it is a matter of considerable interest to find sets
of points for which D is as small as possible.

It is easy to see that D§=7%. Forif |Sy(x{®,1,...,1) —Nx{’|=a <3, then for any € >0
|ISvx®P+e€,1,...,1)—Nx’+€)| >1—a—Ne and so is >3 if € is sufficiently small. In one
dimension, the sequence of points x,;=212—;1, i=1,2,...,N, has Df= % for every N. In two

or more dimensions the situation is entirely different; K. F. Roth [3] has shown that for S >1
dimensions there is a positive number C(S) such that

Dy > C(S)log N)%:1 4)

for any set of NV points. It is not known that this result is best possible; there is some reason to

2
measure of unevenness of distribution, which we shall denote “Ey’’. It is defined by

guess that the exponent may be replaceable by S—1. In his proof Roth introduced another

1 1 1/2.
Ex=FEx(xi, . .. ,xN)=<f R j [Su(afD ... )= NV, . , X9|2dx® dx(5)> . (5
0 0

This L? norm is sometimes easier to handle than the maximum norm D,¥, and Roth in fact proved
(4) with Ey in place of D.

In 1935 van der Corput [4] raised the question of whether there exists an infinite sequence
X1, X2, . . . of points in the inverval [0, 1] such that D}(x;, x2, . . . , xy) is bounded in N. This was
answered in the negative by Mrs. van Aardenne-Ehrenfest [5] in 1945. Roth, in [3], showed that
this problem is equivalent to the problem of estimating a lower bound for D} for fixed N in two
dimensions. More generally, Roth showed the existence of a constant C such that: For any N

and S, if there is a set of points xq, . . . , xy in Gg such that D¥(xy, . . . , xy) = A, there is a sequence
X{, . . . , xyin Gg_;such that max Dixy, . . ., x,) <CA; and conversely. It follows that for any
infinite sequence x1, x2, . . . in [0, 1], D¥(x1, . . . , xy) = C'(log N)'2 for infinitely many values of N

(where C' is some positive constant). Van der Corput found a sequence for which he showed that
D} <logs N+1 (here and below “log.” denotes the logarithm to the base two); it is constructed
as follows: for each integer n =0, write n as 2M+2k2+. . .+ 2% with Ay<h,<. . . < hy; then
xn=% (7M1 +2"h2+ . . . +2%). (We may picture this process as writing n as a numeral to the

29

base 2 and reflecting this numeral in the “decimal point.”” Thus, in binary notation, x,=0, x;=0.1,
22=0.01, x3=0.11, x4=0.001, etc.) Roth pointed out that then for each /V, the sequence (xl, %),
(xg, %), . .., (xy, 1) in G5 has the property that D <logs N+2. We shall refer to the van der

Corput sequence as “%” and to the Roth sequence, for any N, as “%'”.

J. M. Hammersley [6] and J. H. Halton [7], interested in the application of evenly distributed
sequences to high-dimensional numerical integration, suggested higher-dimensional analogs of
these sequences. Defining ¢i(n), for any integers n =0 and k£ > 1, as the number produced by
reflecting the representation of n to the base £ in the “decimal point” (more formally, if n= a,k™

+ ak2+. . . ak™ where 0<a; <k for i=1, . . ., [, then (pk(n):%(axk""-i-r. . . Faik ™)),

Halton suggested the s-dimensional sequence defined by

Xn:(QDZ(n), 903(’1)7 @5("’)7 o o o9 ‘PPS(n))a TL:O, 19 27 S (6)
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(where Py is the Sth prime) and Hammersley suggested

w0 (. @), @), - pny ) n=1,2,. L. @

Halton proved that for the sequence (6), D and Ey are < C(log N)¥ and for (7) they are < C’ (log
N)¥=1_ for some constants C and C'. He further conjectured that the exponents K and K —1 could
be replaced by K/2 and (K—1)/2 respectively.

2. In this paper, we shall analyze the distribution of the sequences ¥ and ¥’ in detail. Our
results are as follows:

THEOREM 1. For the sequence &,

ks s% logs (N)+0(1) (8)

and the constant 1/3 is best possible —that is, with any smaller constant (8) would not always be true.
THEOREM 2. For the sequence &,

Ey S% log, N+ 0(1) 9)

and the constant 1/6 is best possible.
THEOREM 3. For the sequence ",

1
Dji =7 loga N+0(1). (10)

THEOREM 4. For the sequence &',

o=

From these theorems it follows that Halton’s conjecture is incorrect for the lowest-dimensional
cases of his and Hammersley’s sequences; it is very likely also to be incorrect in all dimensions.

3. Proofs of the Theorems:

We shall first make some notational conventions.

If a letter is used to represent a nonnegative integer, the same letter may be used to represent
the finite string of zeros and ones which is the binary representation of that integer.

If ais a finite string of zeros and ones, we shall enumerate its digits from right to left, calling

the rightmost one the “zeroth digit,” and write “a=ay . .. a; a.” The number of digits in «
will be denoted ““||a||’; thus ||ak ax—1 . .. ao||=k+1. For0<i=<k, “a®” will denote the string
A dji—1 . .. 01 K.

For a string a=ay . . . a, “.a” will denote the number %’i+a:l +. . .+;% (if «is null,

.a will be taken to be zero). If a and B are strings, “«f”” will denote the string consisting of « and
. 1,1 . e
B in the order indicated; so, for example, “0.010a’” will denote Z‘Fg (.), and if «=1101, this will

be the binary number 0.0101101, or 45/128.

If A is any real number, “[A4] will denote the greatest integer not greater than 4, and “{A4}”
will denote A —[A]. The distance from A4 to the nearest integer, which equals the lesser of {4}
and 1—{A4}, will be denoted “< 4>.”

Let us now fix an integer N > 1, and set M= [loga N]. For any x€[0,1], let .apa1az . . . be
the nonterminating binary representation of x. Let 4 =A(x) be the string ayay—1 . . . aiao. We
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will first consider the sequence % =xo, x1, . . ., with x,=¢s(n). To estimate S,(x) we proceed
as follows:
For x, to be less than x, exactly one of the following M + 2 conditions must hold:

(0.) ao>no

(') as=no; a1>m

M'.) ao=no, ax=ny, . . ., Gu-1="ny-1; Ay > Ny

(M"'l/-) apy=no, . . ., Ay—1= Npy-1, Ay = Ny.

These are equivalent, respectively, to the following conditions:
(0.) n=0(mod 2), ay=1
(1.) n=a¢mod 2?), a;=1

(2.) n=a¢+2a;(mod 23), ax=1

M) n=aot2a;+. . .+2M gy _(mod 2M+1), ay=1

M~+1.) n=ao+2a:+. . .+ 2"ay(mod 2m+1).

The number of integers 0 < n < N satisfying condition (0.) is

o ()

the number satisfying condition (1.) is

the number satisfying condition (2.) is

N—ag—2
as ([——“2“3 ‘“]H);

etc. At most one n satisfies condition M+ 1. Thus

M N—(a(;+2a1+. . .+2i71L;i_1)
S| 2 J+1)

i=0

differs from Sy(x) by at most 1.
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Now

v(wpa, V& N & N
Nx—N(2+22+. . .)—i;a, 21.“—'—;:;“(1‘2”1

By the definition of M the second sum is between zero and 1. If we now set

M N—(ap+. . .+ 2 1q;_ N
d=d(x, N):ZO ai < [ s 9i+1 %:1) :|+ 1_2i+1)’ (12)

then d differs from Sy(x) — Nx by at most 2; and so in proving our Theorems, for which a difference
which is 0(1) has no effect, we may deal with d instead of Sy(x) — Nx throughout.
Now

apt+2a;+. . . +20q
21._“ —.Oai,la,-,g . » o« Qo

N . . o (S T & 1 : N .
(in binary notation), and may be written ‘.04 V; it is equal to = ¢2([2ix]). { —} may also be written

2 2i+1
“NO”  Since

N—(ay+. . .+2i1aq;,) N N ' . N _
[ : 2i+1, 1 ]+]42i+1,:[ [Q—iﬁ]"‘(-N“)—-()A“ '))}—[2i+1]+1—./\7‘”,

we may write

M — N if NO = (4D
d= 2 aib;, where b;= {l 'NA lf 'N. = . (13)
i=0 — .ND if NO < 040D,
We will first obtain a lower bound for d: b; <0 only if N;=0; therefore
d= 2 aibi =— z bi=— 2 N, (14)
A’\'i:() A’\'I-:U .\'i:()
0<isM 0=sisM 0=<sis<M

To estimate this last sum, we first note that if the string NV (read from right to left) starts with
a block of consecutive zeros, the .N% corresponding to those digits are zero; and so that block of
zeros may be removed from N. Similarly a block of ones occurring at the leftmost end of N may
be removed. What remains of N can then be broken into disjoint substrings of the forms 01, 001,
0001, . . .and 1,11, 111, . . . . A substring 01 contributes one term to the sum —.N® for that
i which is the index of the zero in the substring. Since that .N% is less than Y2, the contribution
of such a substring to the sum is less than Y4 the length of the substring. Similarly each block: of

the form 001, 0001, . . . contributes to the sum a set of terms whose total is less than Y4 the length
of the block. Substrings of the form 1, 11, 111, . . . contribute nothing to the sum. It follows
that
M—+1
d> 1 (15)

To obtain a sharp upper bound on d we shall require some lemmas:

LEMMA 1. For a fixed integer M = 1 and real number xe[0,1], and A= A(x) as defined above,
the maximum of d(x, N) over all N between 0 and 2M*'—1, is attained at N =2A —2M1ay. (i.e.,
No=0, Nyj=a;_, fori=1,2, . . ., M.)
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M
PROOF: d(x, N)= 2 aix)bi(x, N). Changing any digit N; of N changes b; only for j =i. If a
=0
change in some /N; does not change the sign of some &;, j =i, then it changes that b; by just ST
For any i between 0 and M, let j, be the 1’st j = i such that a; = 1; it then follows that if changing V;
does not change the sign of b; for any j = 1, the change in a;,b;, dominates the sum of all the changes
in d resulting from the change in N;. On the other hand, no b; with j =i changes sign unless b;,
does; so if the change in NV; does change the sign of some 4;, the change in a;;, is still dominating.
K

It follows that the N that maximizes d must also maximize 2 a;ib; for every K between zero and M.
=0

Now let ay, ar, . . . (ri<rs <. . .),bethe1l’sin A. To maximize i aib; we must clearly set
i=0
No=N;=. . .=N,,=0. Proceeding by induction, we assume that Nizlai_l fori=1,2,. . .,
:
and try to define er.' ol e e ey N,«k+1 S0 as to maximize kEH aibi. If repy=rr+1, we must set Ny, 4
i=0
=1, for otherwise b, 1 would be negative. If rpp > r;+ 1, it is clear that b,, , is maximized by
setting Ny, +1=1, Ny 12=Ny 3= . ‘:N"k+1 =0. In either case Ni=a; for i=nr.+1, . . .,

rrk+1, proving the lemma.

Let us now, for any finite string a of zeros and ones, let (@) be the maximum of d(x, N) for
0 <N <2lldl+1 and A(x)=a. It remains to determine the maximum of &) over all strings « of a
given length.

For any integer L =1, let o, and o}, be the strings 10101 . . . 01 and 0101 . . . 01011, re-
spectively, each of length 2L+1 (6,=101, 1= 011)
LEMMA 2. If 0<t=<1, the maximum of 8(a) —t(.c) over all stringsi of length 2L+ 1 occurs
at a=o; if 1 <t <2 the maximum occurs at &= 0'1'
2z 2 1 l 1
PRrOOF: , at 8(o; :—L h —
ROOF: We first note that 6(o7) +9+9 41, and that .o, = 37 64 and .o[= 3 T

The proof proceeds by induction on L. For L=1 the lemma is shown true by direct calculation.
Assuming it true for L, if « is a string of length 2(L+ 1)+ 1, then a«= 008 or 018 or 108 or 118,
where ||8]|=2L+1. In these 4 cases respectively we have:

8(B)— 2+E> (B)+1—1¢/2

50— (3+5) (B+5-2

we shall call these quantities 8;, 8, 8;, and 85. By the induction hypothesis, for 0 < ¢ < 2, 6; and
83 are maximized by taking B=o0, and &, and 8; are maximized by 3=o0;. Direct calculation
then shows that 8; is the largest of the four when 0 <t <1, and 65 is largest when 1 < ¢ < 2, which
proves the lemma.

Thus in particular the maximum of &(«) over all strings « of length 2L+ 1 is 8(o ), which is

equal to % |led| +O(1).

Furthermore, if « is a string of even length then a=08 or 18, where [|3|=2L+1 for some
integer L. In the first case 8(a) = 8(8), and in the second 8(a)=1— .8+ &(B). Since .f<1,a=18

132



yields the larger 8, and then, by Lemma 2., §(«) is maximal when 8= o, or o/; and once again the
maximum of &) is % [l 4 O(1).

Lemmas 1 and 2 together imply that for any positive integer M the maximum of d(x, N) for
M+1

0s<x<1and 0 S N<2M+1 g T+ 0(1), and Theorem 1. follows.
To prove Theorem 2., we shall first show:
LEMMA 3. (f (Sn(x) — Nx)? dx) =3. 2 < >+ 01).

ProoF: First of all, it is sufficient to prove the equatmn with d(x, N) in place of Sy(x)— Nx.
For fixed N, and i =0.1, . . ., M let fi(x)= ai(x)bi(x, N). Then d(x, N)=fo(x)+ filx)+. . .+ fu(x),

and
Jy o mae= (S Lo S (=0, ) )2 3 (o=, 5[ 4)

i=0 Y0
To evaluate the first term on the right of (16), we first define C;, for each 7, by

1 — NGO if NGO = OA(””+2._1»T
Cilx)= (17)

— N9 otherwise
) (i-1) (i) (-1 4 1 y i
and note that C;=b; unless ,04 < NO < .04 +F when Ci=b;—1. Now .04(-V=
1 rr+l o . i
§<p ([2ix]) and so is constant on each interval STRT M 0.1, .» 21— 1; and its values on dif-
ferent intervals differ by at least 2-%. Thus C; and b; are equal everywhere except perhaps on one
interval of length 27, so that if we set Fi(x)= ai(x)Ci(x), we have

1
f Fi— ‘\2. (18)
10 11)

) and one on the other half, while C; is constant

1
J |F x)—f(x)ldx<-§ and
0

r+1
27

Since a; is zero on one half of each interval (

l 1 [ ) | .
on the interval, l",-(x)dxzé Ci(x)dx. The values .()A“"”+F takes on these 2! intervals are
0 0
2 2i

. el o i r
S g o So if .NO 25. Ci=1—_.N9 throughout (0,1) and ﬁ Fi=

just the numbers

L (1—.ND)y= . < i > If NGO < 50 we may write . N = K/2*! ‘where K is an integer between 0 and

2 2I+l
2i—1. It’s then easy to see that N < .OA‘i"’+2flj— on just 21 — K of the above intervals. Then
NG
Ci(x)=.N9 on a set of measure 1 —K/2! and 1 —_.N on a set of measure K/2i; so that F —T
1/ N
=3 {gi1) once again. Therefore, by (18),
= om=13 o
fi== + =3 (=) +0q).
2 . 22<2> W 22<N> & 19

Lemma 3. will now follow if we show that the second and third terms on the right in (16) are
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each O(log N). For the second term this is obvious, since |fix)|<1. To bound the 3d term we

proceed as follows:
For 0 <i <M, set bi(x)=—.ND+e{x), and yix)=.040D.

Then

1if NO =y,
ei= . (20)

0if N <y

and

oo [ 5 [ =g ([ e[ ], o) 21)

Now for any i and j, i <j, set z; jx)=yjx) —2i7yix). Recalling that y;=Y2¢,([2ix]) and

) . , =F 1l .
noting that ¢»([2ix])= {2/~ip2([2x])}, we see that zj,; takes on, in each interval (%, 1—21—>, the 2/
values 21"—["“’ [=0,1, . . ., 2-i—1; and each value is taken on an interval of length 27. There-
fore z;j,i, and y; are independent functions of x, and if we define ejf(x) = ej*i(x) by
1if .N® = z;
o = , (22)
0if .NO <z

we can conclude that

1 1 1
[Jeeg=[ e[ er=0. 23)
0 0 0

By reasoning as we did above about b; and C; we can see that e{x) and e;*(x) are equal except
on a set of measure at most 2i*1, and there |ef(x) —ej(x)|=1. Therefore, by (23)

Joeer=[ ]y ey etemen= [l ;
eiej— | ei| ej|=|| eile;—ef e; i—e)|<2 | |le—ef|< 57
0 2=
From (21), therefore,
l
s (o[ )= 3 ten
0<l<]<W 0<1<]< M
which completes the proof of the lemma.
To prove Theorem 2 we must now show that
2 <21+1> = logs N+0(1), (24)

M M
and that the constant 1/3 in (24) is best possible. We have seen that 2 <2]i\i1>=2 min (.N®,
iz0 i=0
1 —.N%); and we shall show that the last sum is maximized (over all 0 < N < 2M+1) when N is of
the form . . . 010101:
For M =0, this is obvious. If M=K, then N=0N' or 1N’, where V' is a string with M=K—1.

K-1
In the first case the sum is % )+ 2 min ((N®, 1— . N®) and in the second it is —(1 —.N')+ E
=0
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min (V91— .N9), The first is larger if the leftmost digit of N’ is 1, while the second is larger
if the leftmost digit of N’ is zero; which completes the induction. For N of the form specified,

M
E <2/i\+/1> is equal to 1/3 loga N+ 0(1), so (24) is established, together with the fact that the constant
i=0

1/3 cannot be improved upon.

To derive Theorems 3 and 4 from Theorems 1 and 2 we will use a device of K. F. Roth [3].
For any N,and 0 <x<1and 0 <y =<1, let n=n(y)=[Ny]. Then Sy(x, y) for the sequence?’
is equal to Sy(x) for the sequence . Furthermore |N xy — nx| <1, so that

sup |Sw(x,y) — Nxy| differs from sup |S,(x) — nx| by no more
O0=sx,y<1 0=<x=<1

0<n<N

than 1. From Theorem 1,

|Sn(x) — nx| < %logzn +0(1) < %logzN—FO(l);

and from the proof of Theorem 1, if n is the largest integer between 0 and N whose binary rep-
resentation is of the form 10101 . . . 01,

1 1
sup |Su(x) —nx| =g [nll +0()=3 [[V] +0(1)

Theorem 3 follows.
To prove Theorem 4. we use the device of Roth to replace

1/2

1 1/2
(fl (SN(x,y)~ny)2dydy> by (fl fl(S,,(_.,)(x)—xn(y))zdx dy) ¢
0 0 0 0

the latter, in turn, differs by only 0(1) from

()"

i

1
2

(.

Setting gi(y) = <;g1)>’ we can write

JE e o=@l S a-(le))2gffeeflafla) o

As in the analysis of (16), we wish to show that the second and third terms on the right of (26) are
each 0(M). For the second this is obvious; for the third we proceed so: For each i and j > i, set

gj,i(y)=<{2)} 2i-J {2 }> gj.i is then a function of only the M —jth through M —i+ 1th digits
of the binary representation of y, and so is independent of g;, which is a function of the M —ith

that the third term is 0(M) follows

1
through Mth digits. Furthermore f lgj.i(x)— gi(x)|dx < %,
0

as in the proof of Lemma 3.
To evaluate the first term on the right of (26), we note that

1 N 1 N=
J, svar=[ G a=5S () 2

0

12

(O3

211-570 O-66—2



Since (x) = ({x} ), the sum in (27) can be written as

git1_;
N r 2ERr N
l:2i+1:| Eo <2i+1>+Ei: 4 [2i+1:|+Ei’ (28)
where ”
N-1/ 9i+1
O<Ei= 2 <2i+1>< 4
— [2_\7] (29)
Therefore
1 2i+1 / N { N} 4 )
N = ===l = 05
fo g 4 <2l+1 21+1 2l+1 (30)
_N i+1
- 4 + 4 (3]
where |60;]< 1.
S0 (1 +1, 6
e L S
Z:) 0 4 Ngo (31)
M
where |6] <1. Since 2 2i-1 <2 < N, we can conclude that
1=0
M1 M
Efo gi=710() (32)
=0

and Theorem 4. follows.

4. An attempt to analyze the higher-dimensional sequences of Hammersley and Halton along
the above lines was unsuccessful, due to the greater complication of those sequences. Analogs,
for those sequences, of Theorems 1 and 3 would be very useful in application of the sequences
to multiple numerical quadrature.

Intuitively, van der Corput’s sequence . seems to be about as evenly distributed as possible.
This feeling, together with Theorem 1, leads us to the conjecture in section 1 that K. F. Roth’s
lower bound on D} can be improved.
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