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1. If XI, X2, ... , Xs are points in the unit S-dimensional c ube Cs, we may approximate to an 
integral over Cs by the average of the values of th e int egrand at these points. Writing 

(1) 

(where XI I), X\2) •• • ,xIS) are the S coo rdinates of the point X i), we call R the "error" of the quadrature 

form ula (1). R depends on the integrand f and on the se t of points XI, ... ,XN; for R to be r ela ti vely 
small for som e wide class of functions th e se t of points s hould be, in so me se nse, we ll distributed 
in the cube Cs . An appropriate se nse of " we ll di st ributed" is that , for a regio n A in Cs , the numbe r 

of points of th e se t which li e in A s hould be approximately N times the volume of A. Restric ting 
attention to regions which are inte rval s with one vertex at th e origin-i.e. , which are of th e form 

{X=(X(I), ... ,x(S))IO';:; xU) < xV), i = 1,2, ... ,S} 

for some given Xo = (Xbl ), ... , XbS)) ECs - we shall let SN(Xb1l , ... , xhS)) d e note the number of the 

points Xl, ... XN which lie in such an interval, and co n s id e r th e quantity IS,,{xhtl , .. _ ,xbS )) 

-Nxbtlxb2 ), _ •• xbS)I· 
Let 

DZ=DZ(XI, ... ,XN)=SUP ISN(xb1l , ... ,XbS))-Nxbll, ... ,xbS)I · 
XOECS 

(2) 

Dt is very nearly the "discrepancy" (see, e.g., [1])1 of the set of N points. E. Hlawka [2] has 

shown that if the integrand fin (1) is a fun c tion of bounded variation and VU) is its total variation, 

we have the bound 

D* 
IRI ,;:; V(f)--.lY..· 

N 

I Figures in brackets, indicate the li terature references at the end of this paper. 
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Since it is very likely true that all continuous and bounded functions that one ever attempts to 
integrate numerically are of bounded variation, it is a matter of considerable interest to find sets 
of points for which D ~ is as small as possible. 

It is easy to see that D~ ~ t. For if ISN(X~J), 1, ... ,1) - Nx~J)1 = a < t , then for any E > 0 
ISN(X~J)+€, 1, ... , 1)-N(x\J)+E)1 > l-a-NE and so is >t if E is sufficiently small. In one 

. 2i-l 
dimension, the sequence of pomts Xi.=2N' i=l, 2, ... ,N, has D~= t for every N. In two 

or more dimensions the situation is entirely different; K. F. Roth [3] has shown that for 5 > 1 
dimensions there is a positive number C(S) such that 

S-I 
D~ > C(S)(log N)~ (4) 

for any set of N points. It is not known that this result is best possible; there is some reason to 
$-1 

guess that the exponent -2- may be replaceable by 5 - 1. In his proof Roth introduced another 

measure of unevenness of distribution, which we shall denote "EN". It is defined by 

This L2 norm is sometimes easier to handle than the maximum norm D;, and Roth in fact proved 

(4) with EN in place of D~. 

In 1935 van der Corput [4] raised the question of whether there exists an infinite sequence 
XI, X2, ... of points in the inverval [0, 1] such that D~(xJ, X2, ... ,XiV) is bounded in N. This was 

answered in the negative by Mrs. van Aardenne-Ehrenfest [5] in 1945. Roth, in [3], showed that 
this problem is equivalent to the problem of estimating a lower bound for D ~ for fixed N in two 

dimensions. More generally, Roth showed the existence of a constant C such that: For any N 
and 5, if there is a set of points XI, ... , XN in Gs such that DJ(XI, .. . ,XN) = A, there is a sequence 

x;, . . . , x.~ in GS- I such that max D~(x;, . . . , x;,) < CA; and conversely. It follows that for any 
n :!";. N 

infinite sequence XI, X2, . .. in [0, 1], D ~(xJ, ... ,XN) ~ C '(log N)I/2 for infinitely many values qf N 

(where C' is some po~itive constant). Van der Corput found a sequence for which he showed that 
D~ :;s; log2 N + 1 (here and below "log2" denotes the logarithm to the base two); it is constructed 

as follows: for each integer n ~ 0, write n as 2hl + 2"2 +. . . + 2"k with hI < h2 <. . . < hk; then 
Xn = t (2- h l + 2-"2 + ... + 2- "k). (We may picture this process as writing n as a numeral to the 

base 2 and reflecting this numeral in the "decimal point." Thus , in binary notation, xo=O, xI=O.I, 

.X2 = 0.01 , X:l = 0.11, X4 = 0.00l , etc.) Roth pointed out that then for each N, the sequence ( XI, *'), 
(X2 ' ~), ... ,(XN, 1) in G2 has the property that D,t:;s;log2 N+2. We shall refer to the van der 

Corput sequence as ".9"" and to the Roth sequence, for any N, as ".9"'''. 
1. M. Hammersley [6] and 1. H. Halton [7], interested in the application of evenly distributed 

sequences to high-dimensional numerical integration, suggested higher-dimensional analogs of 
these sequences. Defining CPk(n) , for any integers n ~ 0 and k> 1, as the number produced by 
reflecting the representation of n to the base k in the "decimal point" (more formally, if n = alkhl 

1 
+ a2k"" + ... alk"l where O :;s; aj < k for i = 1, ... , l, then CPk(n)= k(alk - hl + ... + alk- hl)), 

Halton suggested the s·dimensional sequence defined by 

Xn=(cp2(n), CP3(n), CP5(n), ... , C{Jps(n)), n=O, 1,2, . 
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(where Ps is the 5th prime) and Hammersley suggested 

(7) 

Halton proved that for the sequence (6), D: and EN are";; C(log N)K and for (7) they are ,,;; C' (log 
N)K- 1, for some constants C and C'. He further conjec tured that the exponents K and K -1 could 
be replaced by K/2 and (K - 1)/2 respectively. 

2. In this paper, we shall analyze the distribution of the sequences 9 and 9 ' in detail. Our 
results are as follows: 

THEOREM I. For the sequence 9, 

DX";; ~ logz (N)+0(1) (8) 

and the constant 1/3 is best possible - that is , with any smaller constant (8) would not always be true. 
THEOREM 2. For the sequence 9, 

1 
E N";; "6 logz N + 0(1) (9) 

and the constant 1/6 is best possible. 
THEOREM 3. For the sequence 9 ', 

D~ =~ Iogz N + 0(1). (10) 

THEOREM 4. F or the sequence 9 ' , 

1 
EN = S logz N + 0(1). (11) 

From these theore ms it follows th at Ha lton's conjec ture is in correc t for the lowes t·dim ensional 
cases of hi s a nd Hammersley's sequ ences; it is very IikeJy also to be incorrec t in aJl dime nsions. 

3. Proofs of the Theore ms : 
We shall first make so me notational conventions. 
If a letter is used to represent a nonnegative integer , the same Ielle r may be used to re present 

the finite string of zeros and ones which is the bin ary representation of tha t integer. 
If a is a finit e s trin g of ze ros a nd ones , we shall e numerate its di gits from ri ght to left , callin g 

the rightmost one the " zeroth digit ," and write "a = a ir . .. a1 aD." Th e number of digits in a 
will be denoted "Ilall"; thus Ilalr ak - 1 ... ao l l = k + 1. F or 0 ,,;; i ,,;; k , "O:<i)" will de note the s trin g 
ai ai - , ... al aD. 

F · " " '11 d h b a h: + ak- I + + aD (' f ' II or a s tnng a = ah' .. aD, .a WI enote t e num er 2 -4- ... 2k +1 J a I S nu , 

.a will be taken to be ze ro) . If a and f3 are s trings, "af3" will denote the s tring consisting of a and 

f3 in the order indicated; so, for exa mple, " O.01Oa" will denote ~ + ~ (. a), and if a= 1101 , thi s will 

be the binary number 0.0101101 , or 45/128. 
If A is any real n umber , " [A J" will denote the greates t integer not greater than A, and " {A} " 

will de note A - [A]. The di stance from A to the nearest integer , which equals the less er of {A} 
and 1 - {A} , will be denoted "< A> ." 

Let us now fix an integer N > 1, and set M = [logz N ]. For any xE[O,1], let . aOa1a2 ... be 
the nonterminating binary re presentation of x . Let A = A(x) be the string aMaM- 1 . . . a,ao. We 
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will first consider the sequence Y=Xo, Xl, ... , with Xn=CP2(n). To estimate Sn(X) we proceed 
as follows: 

For Xn to be less than X, exactly one of the following M + 2 conditions must hold: 

(0'.) ao> no 

(M+1'.) ao=no, ... , aM- l=nM- l, aM=nM. 

These are equivalent, respectively, to the following conditions: 

(0.) n == O(mod 2), ao = 1 

The number of integers 0 ~ n < N satisfying condition (0.) is 

the number satisfying condition (1.) is 

the number satisfying condition (2.) is 

. ([N-ao-2al]+1). a2 23 ' 

etc. At most one n satisfies condition M + 1. Thus 

. 
~ . ([N - (ao+ 2al + ... + 2i - l a i _ l )] + 1) 
.6 a, 2i+ l 
;=0 

differs from SN(X) by at most 1. 
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Now 

(ao al ) M N x N 
Nx = N 2+22 +' .. = 2: a ; 2;+1+. 2: a;2i+I' 

,= 0 ,= M + I 

By the definition of M the second sum is between zero a nd 1. If we now set 

d=d( N)=~ . ([N-(ao+ . . . + 2i- Ia;_I) ] + 1-~) 
x, ~ a, 2i+ 1 2i+l ' 

,= 0 

-- - - - ----

(12) 

the n d differs from SNl:x) - Nx by at most 2; and so in proving our Theorems, for which a difference 
whic h is 0(1) has no effect, we may deal with d instead of SN(X) - Nx throughout. 

Now 

(in binary notation) , and may be written ".OAe;- I)";)t is equal to ~ <P2([2 i x ]). { 2~ '} may also be written 

" .N(i) ." Since 

[N - (ao + . . ' . + 2i - 1a;_I)] + 1 - ~ = [ [~] + ( N(i) _ OAU- I )) ] -[3.-] 1 - N(i) 21+ 1" 2,+1, 21+1 .. 2'·+ I + . , 

we may write 

M {1 - .NU) if .Nil ;3 .OAU- I) 
d = 2: alb;, whe re b; = 

;=0 - .NU) if .N(i) < .0A(i- I). 
(13) 

We will firs t obtain a lower bound for d: bi < 0 only if N;=O; the refore 

d ;3 2: a;b; ;3 - 2: b; ;3- 2: .NU). (14) 
N;= O N;= O N;= O 

O :OS; i ~ M O:5i i :!i M O :5i i ~ M 

To es timate thi s las t s um , we fir s t note that if the strin g N (read from ri ght to left) s tarts with 
a block of co nsecutive zeros, the .No corresponding to those di gits are zero; and so that block of 
zeros may be removed from N. Similarly a block of ones occ urring at th e leftmo st e nd of N may 
be re moved. What remains of N can the n be broke n into di sjoint s ubstrings of the form s 01, 001 , 
0001 , ... and 1, 11 , 111, . . .. A substring 01 contributes one te rm to the s um - .Nil for that 
i whi ch is th e index of the zero in the s ubs trin g. S ince that .NU) is less than 112 , th e co ntributi on 
of s uch a substrin g to the sum is less than 1/ 4 the le ngth of the s ubs trin g. Similarly each bloc k- of 
the form 001 , 0001, .. . co ntributes to the sum a set of terms whose total is less th a n 1/ 4 the le ngth 
of the bloc k. S ubs trin gs of the form 1, 11 , 111, . . . contribute nothing to the s um. It follows 
that 

M + l d >---· 
4 

To obtain a sharp upper bound on d we shall require some le mmas: 

(15) 

LEMMA 1. For ajixed integer M ;3 1 and real number xE[O,l], and A=A(x) as defined above, 
the maximum 0/ d(x, N) over all N between 0 and 2M+I - 1, is attained at N = 2A - 2M +I aM' (i .e., 
No= O, N j=aj_l/ori=l, 2, ... , M.) 
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PROOF: d(x, N) = L ai(x)bi(x, N). Changing any digit Ni of N changes bj only for j ~ i. If a 
i = O 

change in some Ni does not change the sign of some bj , j ~ i, then it changes that bj by just 2 j : i+1' 

For any i between 0 and M, let jo be the l'st j ~ i such that OJ = 1; it then follows that if changing Ni 

does not change the sign of bj for any j ~ 1, the change in ajobjo dominates the sum of all the changes 
in d resulting from the change in Ni• On the other hand, no bi with j ~ i changes sign unless bjo 
does; so if the change in Ni does change the sign of some bj , the change in ajobjo is still dominating. 

K 

It follows that the N that maximizes d must also maximize L aib i for every K between zero and M. 
i= O 

Ti 

Now let ar" a r, . .. (ri < r2 < . .. ), be the 1's in A. To maximize L aib i we must clearly set 
i = O 

No = NJ = . . . = N r, = O. Proceeding by induction, we assume that Ni = ai- J for i = 1, 2,. . ., rk, 
rk+1 

and try to define Nrk + J, • • ., Nrk+l so as to maximize L aibi. If rk+l = rk + 1, we must set N rk+1 
i = O 

=1, for otherwise brk+1 would be negative. If rk+1 > rk+ 1, it is clear that brk+1 is maximized by 

setting N rk +1=1, Nrk+2=Nrk+3=" . = Nrk+1 =0. In either case Ni =ai-1 for i=rk,+l, ... , 

rk+l, proving the lemma. 
Let us now, for any finite string a of zeros and ones, let 8(a) be the maximum of d(x, N) for 

o ~ N < 211,,11+1 and A(x) = a. It remains to determine the maximum of 8(a) over all strings a of a 
given length. 

For any integer L ~ 1, let crL and cr£ be the strings 10101 ... 01 and 0101 ... 01011, re­
spectively, each of length 2L + 1 (cr1 = 101, cr; = 011). 

LEMMA 2. If 0 ~ t ~ 1, the maximum of l5(a)-t(.a) over all strings'a of length 2L+ 1 occurs 

at a = crL; if 1 ~ t ~ 2 the maximum occurs at a = cr~. 

PROOF: We first note that l5(cr:)=~L+~+ 9~4L; and that .cr,.=~- 6.14L and .cr£=~+ 6.14/.· 

The proof proceeds by induction on L. For L = 1 the lemma is shown true by direct calculation. 
Assuming it true for L, if a is a string of length 2(L+ 1)+ 1, then a= 00,8 or 01,8 or 10,8 or 11,8, 
where 11,811 = 2L + 1. In these 4 cases respectively we have: 

t 
l5(a) - t(.ex) = 8(,8) -"4 (.,8) 

15(,8) - (1 +~) (.,8) + 1- t/4 

8(,8) - G +~) (.,8) + 1- t/2 

we shall call these quantities 15 1 , 152 , 153 , and 84 • By the induction hypothesis, for 0 ~ t ~ 2, 151 and 
153 are maximized by taking ,8 = crL, and 152 and 154 are maximized by (3 = crL. Direct calculation 
the n shows that 153 is the largest of the four when 0 ~ t ~ 1, and 82 is largest when 1 ~ t ~ 2, which 
proves the le mma. 

Thus in particular the maximum of l5(a) over all strings a of length 2L+ 1 is l5(cr,), which is 
1 

equal to "3 Iiall + 0(1). 

Furthermore, if a is a string of even length then a = 0{3 or 1{3, where 11{311 = 2L + 1 for some 
integer L. In the first case l5(a) = 15(,8), and in the second 8(a) = 1- .(3 + 15(,8). Since.{3 < 1, a = 1,8 
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yields the larger 8, and the n, by Lem rna 2., 8(0:) is maximal when f3 = (TL or (Tf-; and once again the 

maximum of 8(0:) is ~ 110:11 + 0(1). 

Lemmas 1 and 2 together imply that for any positive integer M the maximum of d(x, N) for 
M+l o ~ x ~ 1 and 0 ~ N < 2M + I is -3- + 0(1) , and Theorem 1. follows. 

To prove Theore m 2. , we shall first show: 

(11 ) 1/2 1 00 (N) 
LEMMA 3. 0 (SN(X) - Nx)2 dx =2" ~ 2i + 0(1). 

PROOF: First of all, it is sufficient to prove the equation with d(x, N) in place of SN(X)- Nx. 

For fixed N , and i = 0,1, ... , M le t }i(x) = a;(x)b;(x , N). Then d(x, N) = fo(x) + fl(x) + ... + fM(X) , 
and 

r I (M 11 ) 2 M (r 1 ( r I )2) Jo d2(x, N)dx =~ 0 ii +~ Jo ff- Jo J; + 2 2: 
OE: i< j E:M 

(f fih- 10' J; f h). (16) 

To evalu ate th e first term on the right of (16), we firs t define Ci , for eac h i, by 

-11 -.N(i) if .N,U) ~ .0Au+l) + 2L 
Ci(x) - N(') h . 

- • I ot e rwlse 
(17) 

and note that C; = bi unl ess ,0A(i - I) ~ .N(i) < .OAU- I) + 2;+1' whe n Ci= bi - 1. Now .0A(i- I)= 

~ cpi [2iX ]) a nd so is co ns tant on each interval (~, r; 1), r= 0, 1, . .. , 2i - 1; a nd its values on dif· 

ferent intervals diffe r by at leas t 2- i . Thus C i and bi are equal e ve ryw he re exce pt pe rh aps on one 
interval of le ngth 2- i , so t hat if we set Fi(x) = ai(x)C;(X), we ha ve 

11 1 I At fl M fl I IF;(x)-J;(x)ldx ~ 2i,a nd 2:, F i - 2: J; ~ 2. 
o , = 0 1= 0 0 

(18) 

Since ai is zero on one half of eac h int erval (~, r; 1) and one on the ot he r ha lf, while C; is co ns tant 

on the interval, fol Fi(X)dx=~ il CI(x)dx. The valu es .OAU- I)+ 2~+ 1 takes on th ese 2i inte rvals a re 

1 2 2i . . 1 . r I 
just the numbers 2i+ I ' 2i + I " .. , 2i + I ' So If .N ') ~ 2"' C; = l - .N(I) throughout (0,1) and Jo Fi = 

!(1 - N(i)) = !(~) . . If NU)<! we may write N(i) = K /2 i+ 1 whe re Kisaninteae rbe tween lOand 2 " 2 2i+ 1 . 2' . '" b ' 

2i - 1. It's then easy to see th at .NU) < .OA(H) + 2;+1 on jus t 2i - K of the above intervals. Then 

C;(x) = .NUl on a se t of measure 1 - K/2i and 1 - .N(i) on a set of measure K/2i; so that fol Fi = .~(i) 
=~ (2~1) once again . Therefore, by (18), 

(19) 

Lemma 3. will now follow if we show that the second and third terms on the right in (16) are 
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each O(log N). For the second term this is obvious, since l/i(X) 1 :;;; 1. To bound the 3d term we 
proceed as follows: 

For 0 :;;; i :;;; M , set bi(x)=-.N(i)+ei(x), and Yi(x)=.OA(Hl. 

Then 

_ {I if .N(i) :;?: Yi 
ei-- , 

o if .N < Yi 
(20) 

and 

(21) 

Now for any i and j, i <j, set zi,ix)=yix)-2H Yi(X). Recalling that Yi=1i2CP2([2ix]) and 

noting that CP2( [2iX]) = {2i- icp2( [2ix ])}, we see that Zj, i takes on, in each interval (~, r;i 1), the 2j - i 

values 2i!i+I' l = 0,1, ... , 2j - i -1; and each value is taken on an interval of length 2- j • There­

fore Zj, i, and Yi are independent functions of x, and if we define e/(x) = ej;'i(x) by 

e* = {I if .N(i) :;?: Zj 

J ' o if .N(i) < Zj 
(22) 

we can conclude that 

(23) 

By reasoning as we did above about bi and C i we can see that ei(x) and ej*(x) are equal except 

on a set of measure at most 2i-i+1, and there lej*(x) - eix) 1= 1. Therefore, by (23) 

From (21), therefore, 

(fl fl fl ) 1 L j;jj- Ii jj:;;; L 2H < M, 
O~ i<j~M 0 0 0 O~ i<j~M 

which completes the proof of the lemma. 
To prove Theorem 2 we must now show that 

M(N) 1 6 2i+1 :;;; '3 log2 N + 0(1), (24) 

and that the constant 1/3 in (24) is best possible. We have seen that ~ (2~1)= ~ min (.N(i), 

1 - .N(il); and we shall show that the last sum is maximized (over all 0 :;;; N < 2M+!) when N is of 
the form ... 010101: 

For M = 0, this is obvious. If M = K, then N = ON' or IN', where N' is a string with M = K-1. 

In the first case the sum is 4 (.N') + Kf min (.N(i) , 1- .N(il), and in the second it is ~ (1- .N') + ~I 
,=0 .=0 
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min (.NU), 1- .N(i). The firs t is larger if the leftmos t digit of N' is 1, while the second is larger 
if the leftmost digit of N' is zero; which co mpletes the induction. For N of the form specified, 

~ (2~1) is equal to 1/3 log2 N + 0(1), so (24) is es tabli shed , together with the fact that the constant 

1/3 cannot be improved upon. 
To derive Theorems 3 and 4 from Theorems 1 a nd 2 we will use a device of K. F. Roth [3]. 

For any N, and 0 ,;;; x,;;; 1 and 0 ,;;; y';;; 1, le t n = n (y) = [Ny]. Then SN(X, y) for the sequenceY' 
is equal to S,,(x) for the sequence Y . Furthermore IN xy - nxl ,;;; 1, so that 

sup ISN(x, y) - Nxyl differs from sup ISII(x) - nxl by no more 
O ~ x. y~ l 

O< n < N 

than 1. From Theorem 1, 

1 1 
IS,,(x) - nx l ,;;; 3" log2 n + 0(1) ,;;; 3" log2 N + 0 (1); 

and from the proof of Theore m 1, if n is the la rges t integer between 0 and N whose binary re p­
resentation is of the form 10101 ... 01, 

1 1 
sup ISn(x) - nxl=3" Ilnll +0(1) =3" IINII + 0(1). 

Theore m 3 follows. 
T o prove Theore m 4. we use the device of Roth to re place 

the latter , in turn, differs by only 00) from 

( II (2 M (n (y»))2 ) 1/2 . 
2 L 2i+1 dy 

o i = 0 

(25) 

S . () ('i(Y») . e tlIn g gi y = 2i+1 , we can WrIte 

1 I (M ( n ))2 (M 11 ) 2 M (J I (f I )2 ) [ I I J I 1 I ) L 2; +1 dY=L gi +L g]- gi +2 L gigj- gi gj ' 
o , = 0 , = 0 0 . = 0 0 0 O""<J "' A 0 0 0 

(26) 

As in the a nalysis of (16), we wish to show that the second a nd third terms on the right of (26) are 
eac h 0 (M) . For the second this is obvious; for the third we proceed so: For each i a nd j > i, se t 

gj . i(Y) = ({~} - 2; - j {~} ) ; gj .i is the n a fun ction of only the M - jth through M - i + 1 th digits 

of the binary representation of y, a nd so is independe nt of g i, whic h is a function of the M - ith 

through M th digits. Furthermore t Igj. i (x) - gj (x) I dx ,;;; '2)2_ i; that the third term is O(M) follows 

as in the proof of Le mma 3. 
T o evaluate the first term on the right of (26), we note that 

II 11 [Ny ] 1 N- I ( r ) 
o gi(y) dy = 0 2i + 1 d y =f.i ~ 2 i + 1 • (27) 
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Since (x) = ({x}), the sum in (27) can be written as 

where 

Therefore 

where JOd<t:: 1. 
So 

M 

II 2i+l (N {N} 4 ) 
N 0 g;=T 2i+l- 2 i+ 1 + 2 i+ 1 E; 

N 2i +1 

="4+TOi, 

M II M + 10 M . 2: gi=--+- 2: 2'~1 
; = 0 0 4 N;=o 

where J OJ < 1. Since 2: 2; ~ 1 < 2M ~ N, we can conclude that 
. = 0 

M JI M 
;~ 0 g;=4+ 0 (1) 

and Theorem 4. follows. 

(28) 

(29) 

(30) 

(31) 

(32) 

4. An attempt to analyze the higher-dimensional sequences of Hammersley and Halton along 
the above lines was unsuccessful, due to the greater complication of those sequences. Analogs, 
for those sequences, of Theorems 1 and 3 would be very useful in application of the sequences 
to multiple numerical quadrature. 

Intuitively, van der Corput's sequence !/ seems to be about as evenly distributed as possible. 
This feeling, together with Theorem 1, leads us to the conjecture in section 1 that K. F. Roth 's 
lower bound on D-: can be improved. 
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