Math 525: Assignment 3

- 1. (Borel measurable) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous.
 - (a) Let

$$\mathcal{G} = \{(a, b) \colon -\infty < a < b < \infty\}$$

be the set of all open intervals. Show $\sigma(\mathcal{G}) = \mathcal{B}(\mathbb{R})^{1}$.

(b) Define

$$\mathcal{M} = \left\{ B \subset \mathbb{R} \colon f^{-1}(B) \in \mathcal{B}(\mathbb{R}) \right\}.$$

Show that \mathcal{M} is a σ -algebra.² This establishes $\sigma(\mathcal{M}) = \mathcal{M}$.

- (c) (Optional) Show that for any $G \in \mathcal{G}$, $f^{-1}(G)$ is a countable union of open intervals. This establishes $\mathcal{G} \subset \mathcal{M}$.
- (d) Use (a), (b), and (c) to conclude that $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}$ and hence f is Borel measurable.
- 2. (Distribution function) Let X be a discrete random variable with distribution function F. Show that $\sum_{n} F(x_n) F(x_n-) = 1$.
- 3. (Uniform random variable) Define the function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

and the function $F \colon \mathbb{R} \to [0,1]$ by $F(x) = \int_{-\infty}^{x} f(y) dy$. Let $Y \sim U[0,1]$. Note that $F^{-1}(\{0\})$ is a set containing more than one element. Moreover, $F^{-1}(\{1\})$ is empty. As such, F is not technically a bijection, and hence the expression $F^{-1}(Y)$ is not well-defined. However, note that $\{Y = 0\}$ and $\{Y = 1\}$ occur with zero probability. Therefore, assuming Y does not take the values 0 or 1, we can unambiguously define $X = F^{-1}(Y)$.

- (a) Simplify the expression $X = F^{-1}(Y)$ as much as possible.
- (b) What is the distribution function of X?

¹**Hint**: use the fact that $(x, \infty) = (x, x+2) \cup (x+1, x+3) \cup \cdots$ and $(-\infty, x] = \mathbb{R} \setminus (x, \infty)$ ²**Hint**: use the properties of f^{-1} from the previous assignment

4. (Expectation) Let X_1, X_2, \ldots be nonnegative integer-valued random variables. Suppose they are independent and have the same distribution function F (in this case, we say X_1, X_2, \ldots are *independent and identically distributed*, or i.i.d. for short). Show that³

$$\mathbb{E}\min\{X_1,\ldots,X_m\} = \sum_{n=1}^{\infty} \mathbb{P}\{X_1 \ge n\}^m$$

5. (Integrability) Let X be a discrete random variable. Suppose X^2 is integrable. Show that X is integrable.⁴

³**Hint**: use the fact that $\mathbb{E}Y = \sum_{n \ge 1} \mathbb{P}(\{Y \ge n\})$ for a nonnegative integer-valued random variable Y⁴**Hint**: use the inequality $|a| \le \max\{1, |a|^2\}$