Math 525: Assignment 2

- 1. (Independence) Let A and B be independent events. Show that $A^c = \Omega \setminus A$ and $B^c = \Omega \setminus B$ are independent. Also show that A and B^c are independent (and so too, by symmetry, are A^c and B).
- 2. (Conditional probability) Roll two (fair) dice. What is the probability that at least one of the two dice is four given that their sum is seven?
- 3. (Conditional probability) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $B \in \mathcal{F}$ be an event with $\mathbb{P}(B) > 0$. Define the function $\mathbb{T}: \mathcal{F} \to [0, 1]$ by $\mathbb{T}(A) = \mathbb{P}(A \mid B)$.
 - (a) Show that $(\Omega, \mathcal{F}, \mathbb{T})$ is a probability space. **Hint**: since we already know that \mathcal{F} is a σ -algebra on Ω , we need only check that \mathbb{T} is a probability measure.
 - (b) Why did we require $\mathbb{P}(B) > 0$?
- 4. (Counting) Consider a circular table with $N \ge 4$ seats. Barbie and Ken are two of N dinner guests to be seated at this table. In how many ways can the dinner guests be seated such that...
 - (a) Barbie and Ken are not adjacent.
 - (b) Barbie and Ken are adjacent.
- 5. (Counting) Prove the binomial theorem. That is, prove that for a positive integer n and real numbers a and b,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Hint: an easy way to do this is with induction.

- 6. (Inverse images) Let $f: A \to B$. Show that for any $H, J \subset B$,
 - (a) $f^{-1}(H \cup J) = f^{-1}(H) \cup f^{-1}(J).$
 - (b) $f^{-1}(H^c) = (f^{-1}(H))^c$.
 - (c) $f^{-1}(H \cap J) = f^{-1}(H) \cap f^{-1}(J)$. **Hint**: use parts (a) and (b).
- 7. (Random variables) Let $(X_n)_{n\geq 1}$ be a sequence of random variables. Prove that $\sup_n X_n$ is also a random variable.